
Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

a[i] >= 0 i < j

a[i] < a[j] i <= j

Suppose we are writing some "loopy" code with the
following "Inv" diagram:

What should be the guard on our loop?

a:

i j

negative non-negative?

CS 2110
February 3, 2026

Lecture 5: Analyzing Complexity

Today's Learning Outcomes

CS 2110 3

25. Explain the benefits of using asymptotic analysis versus performance
testing to evaluate the efficiency of a piece of code.

26. Determine the asymptotic time and space complexity of a piece of code
involving one or more loops and/or method calls.

27. Determine whether a given (mathematical) function belongs to a given
big-O complexity class.

28. Compare and contrast linear search and binary search.

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 4

Code Performance

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 5

Recall: Our paritySplit() Method

Lecture 5: Analyzing Complexity

static int paritySplit(int[] a) {
 int i = 0; int j = a.length;
 /* Loop invariant: `a[..i)` is even, `a[j..]` is odd */
 while (i < j) {
 if (a[i] % 2 == 0) {
 i++;
 } else {
 swap(a,i,j-1);
 j--;
 }
 }
 return j;
}

static void swap(int[] a, int x, int y) {
 int temp = a[x];
 a[x] = a[y];
 a[y] = temp;
}

How should measure the
runtime of this code?

February 3, 2026

CS 2110 6

Measuring Runtime

Lecture 5: Analyzing Complexity

int[] a = … ; // initialize input array

long start = System.nanoTime();
int i = paritySplit(a);
long end = System.nanoTime();
System.out.println("paritySplit() ran in " + (end - start) / 1e6 + " ms.");

Option 1: Time its execution

February 3, 2026

CS 2110 7

Measuring Runtime

Lecture 5: Analyzing Complexity

Option 2: Time its execution across many input sizes

February 3, 2026

CS 2110 8

Runtime vs. Time Complexity

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 9

Counting Basic Operations

Lecture 5: Analyzing Complexity

static void swap(int[] a, int x, int y) {

 int temp = a[x];

 a[x] = a[y];

 a[y] = temp;

}

February 3, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

{1, 2, 3, 5, 7}

Which paritySplit()
input will execute more
basic operations?

{2, 4, 6, 7, 8}

They are the same

static int paritySplit(int[] a) {
 int i = 0; int j = a.length;
 /* Loop invariant: `a[..i)` is even, `a[j..]` is odd */
 while (i < j) {
 if (a[i] % 2 == 0) {
 i++;
 } else {
 swap(a,i,j-1);
 j--;
 }
 }
 return j;
}

CS 2110 11

Best-Case vs. Worst-Case Inputs

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 12

Counting Basic Operations (Worst-Case)

Lecture 5: Analyzing Complexity

static int paritySplit(int[] a) {

 int i = 0; int j = a.length;

 while (i < j) {

 if (a[i] % 2 == 0) {

 i++;

 } else {

 swap(a,i,j-1);

 j--; }}

 return j; }

February 3, 2026

CS 2110 13

Asymptotic (Big-O) Notation

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 14

The Runtime Hierarchy

Lecture 5: Analyzing Complexity

Complexity Class Name

O(1) Constant Time

O(log 𝑁) Logarithmic Time

O(𝑁) Linear Time

O(𝑁 log 𝑁) Linearithmic Time

O(𝑁2) Quadratic Time

O(𝑁3) Cubic Time

O(2𝑁) Exponential Time

Better
Performance

Worse
Performance

February 3, 2026

CS 2110 15

Another Method: hasDuplicates()

Lecture 5: Analyzing Complexity

/** Returns whether `a` contains duplicate entries,
 * distinct indices `i != j` with `a[i] == a[j]`.*/
static boolean hasDuplicates(int[] a) {
 for (int i = a.length - 1; i >= 0; i--) {
 for (int j = 0; j < i; j++) {
 if (a[i] == a[j]) {
 return true;
 }}}
 return false;
}

February 3, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

{ 1, 2, 3, 4, 5, 6 }

Which of the following is a best-case input of length
6 to hasDuplicates()?

/** Returns whether `a` contains duplicate entries,
 * distinct indices `i != j` with `a[i] == a[j]`.*/
static boolean hasDuplicates(int[] a) {
 for (int i = a.length - 1; i >= 0; i--) {
 for (int j = 0; j < i; j++) {
 if (a[i] == a[j]) {
 return true;
 }}}
 return false;
}

{ 1, 1, 2, 3, 4, 5 }

{ 1, 2, 3, 4, 5, 1 }

{ 1, 2, 3, 4, 5, 5 }

CS 2110 17

Asymptotic Analysis

Lecture 5: Analyzing Complexity

static boolean hasDuplicates(int[] a) {

 for (int i = a.length - 1; i >= 0; i--) {

 for (int j = 0; j < i; j++) {

 if (a[i] == a[j]) {

 return true;

 }}}

 return false;

}

February 3, 2026

CS 2110 18

Visualizing hasDuplicates() Runtime

Lecture 5: Analyzing Complexity February 3, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

20 seconds

40 seconds

100 seconds

hasDuplicates() ran in 10 seconds for an
array with 360,000 elements.
How long should it take to run on an array with
720,000 elements?

CS 2110 20

Linear Search

Lecture 5: Analyzing Complexity

/** Returns the smallest index `i` such that `a[i] == v` or returns
 * `a.length` if `a` does not contain `v`. */
static int linearSearch(int[] a, int v) { ... }

February 3, 2026

CS 2110

Coding Demo:

21

Linear Search

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110 22

Runtime Analysis

Lecture 5: Analyzing Complexity

static int linearSearch(int[] a, int v) {
 int i = 0;
 /* Loop inv: `a[..i)` does not contain `v`. */
 while (i < a.length) {
 if (a[i] == v) {
 return i;
 }
 i++;
 }
 return a.length;
}

February 3, 2026

CS 2110 23

Binary Search

Lecture 5: Analyzing Complexity February 3, 2026

CS 2110

Coding Demo:

24

Binary Search

Lecture 5: Analyzing Complexity February 3, 2026

