
Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

3

4

5

6

How many loop iterations does binarySearch(a,7) run?

static int binarySearch(int[] a, int v) {
 int l = 0; int r = a.length;
 /* Loop invariant: `a[..l) < v`, `a[r..] >= v` */
 while (l < r) {
 int m = l + (r - l) / 2;
 if (a[m] < v) { l = m + 1;
 } else { r = m; }
 }
 return r;
}

0a: 1 2 3 4 5 6 7 8 9

CS 2110 2

Runtime Analysis

Lecture 5: Analyzing Complexity (Wrap-Up)

static int binarySearch(int[] a, int v) {
 int l = 0; int r = a.length;
 /* Loop invariant: `a[..l) < v`, `a[r..] >= v` */
 while (l < r) {
 int m = l + (r - l) / 2;
 if (a[m] < v) { l = m + 1;
 } else { r = m; }
 }
 return r;
}

February 5, 2026

CS 2110 3

Space Complexity

February 5, 2026Lecture 5: Analyzing Complexity (Wrap-Up)

CS 2110
February 5, 2026

Lecture 6: Recursion

Today's Learning Outcomes

CS 2110 5

10. Develop recursive methods in Java given their specifications.

29. Determine the number of recursive calls and the maximum depth
of the call stack of a recursive method and use these to compute its
time and space complexities.

Lecture 6: Recursion February 5, 2026

CS 2110 6

Recursive Methods

Lecture 6: Recursion February 5, 2026

CS 2110 7

Computing Factorials

Lecture 6: Recursion February 5, 2026

/** Returns `n!`. Requires `0 <= n <= 12` */
static int factorial(int n) {
 int product = 1;
 /* loop invariant: */
 for (int i = 1; i <= n; i++) {
 product *= i;
}
 return product;
}

CS 2110 8

A Recursive Implementation

Lecture 6: Recursion February 5, 2026

CS 2110

Coding Demo:

9

Recursive factorial()

Lecture 6: Recursion February 5, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

1

3

4

5

How many total call frames are created when we
evaluate factorial(4)?

/** Returns `n!`. Requires `0 <= n <= 12` */
static int factorial(int n) {
 assert 0 <= n && n <= 12;
 if (n <= 1) {
 return 1;
 }
 int f = factorial(n - 1);
 return n * f;
}

CS 2110 11

Visualizing Recursion

Lecture 6: Recursion February 5, 2026

/** Returns `n!`
 * Requires `0 <= n <= 12` */
static int factorial(int n) {
 assert 0 <= n && n <= 12;
 if (n <= 1) {
 return 1;
 }
 int f = factorial(n - 1);
 return n * f;
}

CS 2110 12

Time Complexity of Recursive Code

Lecture 6: Recursion February 5, 2026

CS 2110 13

Space Complexity of Recursive Code

Lecture 6: Recursion February 5, 2026

CS 2110 14

Recursion on Arrays
/** Returns the maximum value in array `nums`. Requires that `nums` is non-empty. */
static double maxValue(double[] nums) { ... }

Lecture 6: Recursion February 5, 2026

CS 2110

Coding Demo:

15

Recursive maxValue()

Lecture 6: Recursion February 5, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

Time Complexity: O(𝑵) Space Complexity: O(𝑵)

Time Complexity: O(𝑵) Space Complexity: O(𝑵𝟐)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵𝟐)

What are the time and space complexities of our
recursive maxValue() implementation?

CS 2110 17

Array Views

Lecture 6: Recursion February 5, 2026

CS 2110

Coding Demo:

18

maxValue(), Take 2

Lecture 6: Recursion February 5, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)

Time Complexity: O(𝑵) Space Complexity: O(𝑵)

Time Complexity: O(𝑵) Space Complexity: O(𝑵𝟐)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵𝟐)

What are the time and space complexities of our new
maxValue() implementation?

CS 2110 20

Another Recursive Method on Arrays

/**
 * Returns true if there is a subset of entries from `coins` whose sum
 * is equal to `total`, otherwise returns `false`.
 */
static boolean canMakeChange(int total, int[] coins) { … }

Lecture 6: Recursion February 5, 2026

CS 2110

Coding Demo:

21

canMakeChange()

Lecture 6: Recursion February 5, 2026

CS 2110 22

Visualizing the Call Structure

Lecture 6: Recursion February 5, 2026

CS 2110 23

Time and Space Complexity

Lecture 6: Recursion February 5, 2026

