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How Tany loop iterations doesibinﬁr'ySear‘ch (a,7) run?
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[ static int binarySearch(int[] a, int v) { )

int1=0; intr=a.length;

3 (A)

while (I < r) { C ™M 4

.
8
=

£
intm=I1+(r-1)/2; 0 |0
if(a[m]<v){I=m+1;, ¢ |10
lelse{ r=m;} 6 8
}

returnr;

77 6 (D)

U




Runtime Analysis

static int binarySearch(int[] a, int v) {
intl=0; intr=a.length; 3 Oll)
/* Loop invariant: “al..l) < v’, “a[r.] >=v" */
while (I <r) {
intm=1+(r-1)/2;
if (a[m]<v){l=m+ 1;} O0() work
lelse{ r=m;}

}
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return r;
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Space Complexity

Measures +the total amoust of memory qllocafed ot

—

one fime  durivyg the execution of a metuod (beyord pue

Gpace For 1+ Parqmefers)_
P — jhese are  the

~gcratey space {or comf’ﬂ‘rqhon" caller’s re’P““;L“hly

hime)

- can f(€use Space lafer (yalike
—a)l wmetbods we sow last lectyre Lad OC(I) Space
complexity

- 381'5 moce Subtle Whea e asdlyze recarsive  wmethods

CS 2110 Lecture 5: Analyzing Complexity (Wrap-Up) February 5, 2026



Lecture 6: Recursion

CS 2110
February 5, 2026




Today's Learning Outcomes

10. Develop recursive methods in Java given their specifications.

29. Determine the number of recursive calls and the maximum depth
of the call stack of a recursive method and use these to compute its

time and space complexities.
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Recursive Methods

A method 5 recwl‘s:v; F i+ can be iavoked £rom
Qithia S own defiaition.
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Computing Factorials

DQ‘F The Fad-g:al of : A
an  int NZ20 5 e static int factorial(int n) {
F[oclnr,‘l' of all poy e int product = 1;
l'\\'s Z n, P"Odv)d' = (i"\)\. ;
B for(inti=1;i<=n;i++) {
Ex. Yl= 1-2-3.4 = 2y product *=i;
}

b! = 1.2.3. Y- 5.6 =720 return product;
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A Recursive Implementation

Base Case. O!=] (also  11=1) 50
.gq,_-}ar;al (n) con  (etarn | F n &)

Recwrsive Cirse .

Asw " How c9 ¢ allty .
1pat help COMp-afe i+ for @ |‘lf]ef )OP._1+?"
5! = 1-2-3-4-5
N————""
M v
More ﬂeaerallyj

qu-of.‘ﬂ() 0n & $maller

(ecqfsive call

nl = (a-D) < n

CS 2110 Lecture 6: Recursion February 5, 2026




2 Coding Demo: Recursive factorial() &
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How many total call frames are created when we
evaluate factorial(4)?

static int factorial(int n) { 1 (A)
assert0<=n & & n<=12;
if (n<=1){ 3 (B)

return 1;

}
int f = factorial(n - 1); 4 @
return n * f;

) IR (D)




Visualizing Recursion

SMPPOSe we c¢all factoria] (H) p ~
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Lacto ¢ al (1) > we doa't :lm)
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N 10 3 de. See
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Coant 21 | ores. int f = factorial(n - 1);
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Time Complexity of Recursive Code
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Space Complexity of Recursive Code
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Recursion on Arrays

/** Returns the maximum value in array ‘'nums’. Requires that 'nums’ is non-empty. */
static double maxValue(double[] nums) { ... }
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2 Coding Demo: Recursive maxValue() &
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What are the time and space complexities of our
recursive maxValue() implementation?
ch\, o‘F O[N) fCcacsive C‘t“.S g%ed O(N) space ~nd d.d OCN) Work

Time Complexity: O(N) Space Complexity: O(N) (A)
Time Complexity: O(N) Space Complexity: O(N?) (B)
Time Complexity: O(N?) Space Complexity: O(N) (C)

Time Complexity: O(N*)  Space Complexity: O(N*) ©



Array Views
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2 Coding Demo: maxValue(), Take2 &
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What are the time and space complexities of our new

maxValue() implementation?
EacY of O(N) fecarsive cally wsed O()  space <-4 dd O(1)) work

Time Complexity: O(N) Space Complexity: O(N)
Time Complexity: O(N) Space Complexity: O(N?) (B)
Time Complexity: O(N?) Space Complexity: O(N) (C)

Time Complexity: O(N?) Space Complexity: O(N?) (D)



Another Recursive Method on Arrays

static boolean canMakeChange(int total, int[] coins) { ... }
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2 Coding Demo: canMakeChange () J=\
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Visualizing the Call Structure

coins: [ 1 [ 5 | 10 .\.o']'ql:zN+'_| = O(ZN)

callg
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Time and Space Complexity

ey execvfion of C“"Makec"'mjc Reu-.r;:ue() Joes O“)
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