Poll Everywhere

PollEv.com/javabear text javabear to 22333

How Tany loop iterations doesibinﬁr'ySear‘ch (a,7) run?
r

[

v
a:,O 1 2 (3|1 4] 5|6 7|8 9|

[static int binarySearch(int[] a, int v) {)

int1=0; intr=a.length;

3 (A)

while (I < r) { C ™M 4

.
8
=

£
intm=I1+(r-1)/2; 0 |0
if(a[m]<v){I=m+1;, ¢ |10
lelse{ r=m;} 6 8
}

returnr;

77 6 (D)

U

Runtime Analysis

static int binarySearch(int[] a, int v) {
intl=0; intr=a.length; 3 Oll)
/* Loop invariant: “al..l) < v’, “a[r.] >=v" */
while (I <r) {
intm=1+(r-1)/2;
if (a[m]<v){l=m+ 1;} O0() work
lelse{ r=m;}

}
] oWy

return r;

}

()

. J

- In every iteration,

the
+o q‘l’ MOJ"'

\OOP
" [e,r) shriaks

Walf
r-£<1
¥ itecations

() oy

60 # \{'C(O'HO’)S

Wwidow
its old Size.

— SJ.QP when

£ \c:jz(l\l)
=0(logN)

56[\0‘5 N) run’-img

CS 2110

Lecture 5: Analyzing Complexity (Wrap-Up)

February 5, 2026

Space Complexity

Measures +the total amoust of memory qllocafed ot

—

one fime durivyg the execution of a metuod (beyord pue

Gpace For 1+ Parqmefers)_
P — jhese are the

~gcratey space {or comf’ﬂ‘rqhon" caller’s re’P““;L“hly

hime)

- can f(€use Space lafer (yalike
—a)l wmetbods we sow last lectyre Lad OC(I) Space
complexity

- 381'5 moce Subtle Whea e asdlyze recarsive wmethods

CS 2110 Lecture 5: Analyzing Complexity (Wrap-Up) February 5, 2026

Lecture 6: Recursion

CS 2110
February 5, 2026

Today's Learning Outcomes

10. Develop recursive methods in Java given their specifications.

29. Determine the number of recursive calls and the maximum depth
of the call stack of a recursive method and use these to compute its

time and space complexities.

CS 2110 Lecture 6: Recursion February 5, 2026

Recursive Methods

A method 5 recwl‘s:v; F i+ can be iavoked £rom
Qithia S own defiaition.

- Ano{"ﬂef‘ V\"‘yl ' o1 ddfom o \aop;/ ‘l‘o qQch.eve
C0nd?+;°"’°l re pei-h‘io'l of code

.
L S;Mp|e‘§{" l'\pwf,s w'oose

Loops Recalsion resolt 1S 40"7pt4i€.d
]_ooP Vars Parameters dicectly
Loop Bod\/ M evod Bady K Whew e Acide o
LOOP (7|,.4‘J 8956 C‘ljels) (ecarsive VV)&'I"?O‘, we ré
- inplem
Loop Tavariqnt Methad Spee hoth ils mplemeater
gnd ils clevt!

CS 2110 Lecture 6: Recursion February 5, 2026

Computing Factorials

DQ‘F The Fad-g:al of : A
an int NZ20 5 e static int factorial(int n) {
F[oclnr,‘l' of all poy e int product = 1;
l'\\'s Z n, P"Odv)d' = (i"\)\. ;
B for(inti=1;i<=n;i++) {
Ex. Yl= 1-2-3.4 = 2y product *=i;
}

b! = 1.2.3. Y- 5.6 =720 return product;

ll ;l k} J

0'z)] [malt, ideatity)

CS 2110 Lecture 6: Recursion February 5, 2026

A Recursive Implementation

Base Case. O!=] (also 11=1) 50
.gq,_-}ar;al (n) con (etarn | F n &)

Recwrsive Cirse .

Asw " How c9 ¢ allty .
1pat help COMp-afe i+ for @ |‘lf]ef)OP._1+?"
5! = 1-2-3-4-5
N————""
M v
More ﬂeaerallyj

qu-of.‘ﬂ() 0n & $maller

(ecqfsive call

nl = (a-D) < n

CS 2110 Lecture 6: Recursion February 5, 2026

2 Coding Demo: Recursive factorial() &

CS 2110 Lecture 6: Recursion February 5, 2026

Poll Everywhere

PollEv.com/javabear text javabear to 22333

How many total call frames are created when we
evaluate factorial(4)?

static int factorial(int n) { 1 (A)
assert0<=n & & n<=12;
if (n<=1){ 3 (B)

return 1;

}
int f = factorial(n - 1); 4 @
return n * f;

) IR (D)

Visualizing Recursion

SMPPOSe we c¢all factoria] (H) p ~
N ot 1 xO,d:oMP;‘Y
Lacto ¢ al (1) > we doa't :lm)
£lhat :] coll frames ofte ¢ | static int factorial(int n) {
‘ Nwint T2 ey fetur, but | assert0<=n && n <= 12;
facdee:11(2) Cont T, | tus dees g if (n<=1){
: '1 ' Jeanglate ©1 A return 1;
N 10 3 de. See
(.‘“\.r!ﬂ (3) i‘n ,:..fuons " }
Coant 21 | ores. int f = factorial(n - 1);
— > 4 return n * f;
. |’\L b re‘.]_“r ns }
octorinl (M) | Lamat e 24 \- J

CS 2110 Lecture 6: Recursion February 5, 2026

Time Complexity of Recursive Code

We Mugd account for tye opecatlons perfocmed qross
all of f4e fecarsive callg,

Detecmae 2 things:
) W donse i eqch cll :‘- .

\)
— Noa- Recursive o

ton q Vi .
(16 a fuackon of 1ne paramaters) n-2 O(n)
For factorial () this waes 0()) [A=

Lfractare —/

-~ KRecurs.ve call
aQboJE Jo add w)O)

(to Wrow Uow ey of Foe

CS 2110 Lecture 6: Recursion February 5, 2026

Space Complexity of Recursive Code

Aﬁ"'"ﬂj we o Ccount €oc 0 -}\,,;,,'35'.
Yoct
1. Add;tional space of obu€ets couastru,ied b);
0)47 (,‘\“5 [none "1\«/ 'F*Z*)—al‘l"l)())
2. Gpace takea 4P b, call fromes

T\/'DFCQHT D(l) p. 4 @xi"’)w-’h ki of CQ)L

frames FJCSeML at q”)‘ F“'\" of the €%ec ploy

I add:denal 4pace
'lre(")’_g:‘/t ch"L’ /I- pime to *"t\{(e
. ‘ all Stack fromes
For §retorial() 0 0O+ 00) x = Oln) s recarsion less

efficieat thana ;}elation

CS 2110 Lecture 6: Recursion February 5, 2026 13

Recursion on Arrays

/** Returns the maximum value in array ‘'nums’. Requires that 'nums’ is non-empty. */
static double maxValue(double[] nums) { ... }

Base Lase. L& 1ums. length is), then Yur ouly
valye i$ tye wMex Valae

Recursive Case.

| Recmcsive cal
m0|><<£ | |] | >/ on smaller acray

[o] [[2] [n-1]

= mmX<n\msI03) VYMX(E ljj)
0

3 v-1]

CS 2110 Lecture 6: Recursion February 5, 2026

2 Coding Demo: Recursive maxValue() &

CS 2110 Lecture 6: Recursion February 5, 2026

Poll Everywhere

PollEv.com/javabear text javabear to 22333

What are the time and space complexities of our
recursive maxValue() implementation?
ch\, o‘F O[N) fCcacsive C‘t“.S g%ed O(N) space ~nd d.d OCN) Work

Time Complexity: O(N) Space Complexity: O(N) (A)
Time Complexity: O(N) Space Complexity: O(N?) (B)
Time Complexity: O(N?) Space Complexity: O(N) (C)

Time Complexity: O(N*) Space Complexity: O(N*) ©

Array Views

Consi'fwd""j dJew smaller Arrqy ‘o P‘US i to
Cecar SJ.VC C,Q‘I 1S e)(?el,s:uc‘.

Twsiesd, we'd lLUe to 492¢ 0"'7 onk qffay CP"55
an olias ceferevice) aqad el 11t fecalsive call
“oq{7 loo ot laese entries”
Colution, Use addittong] fortme-lers 4o defire QiCey
Jire~/

qu\lqlue, Recurg.ve cho"b‘e(j "M”’9/ it BCj"”) Z {

CS 2110 Lecture 6: Recursion February 5, 2026

2 Coding Demo: maxValue(), Take2 &

CS 2110 Lecture 6: Recursion February 5, 2026

Poll Everywhere

PollEv.com/javabear text javabear to 22333

What are the time and space complexities of our new

maxValue() implementation?
EacY of O(N) fecarsive cally wsed O() space <-4 dd O(1)) work

Time Complexity: O(N) Space Complexity: O(N)
Time Complexity: O(N) Space Complexity: O(N?) (B)
Time Complexity: O(N?) Space Complexity: O(N) (C)

Time Complexity: O(N?) Space Complexity: O(N?) (D)

Another Recursive Method on Arrays

static boolean canMakeChange(int total, int[] coins) { ... }

. La
Ex. caqaMake C ﬂjc(lél |

|X5)l0\'2§

==

Can NMake C"m')je (2/ |

—

| 1‘5)10\:25

) = ')lfvze
)'= false

* Think aqbout ase cases + fecursive calls X

CS 2110 Lecture 6: Recursion

February 5, 2026

2 Coding Demo: canMakeChange () J=\

Case . coing. ,ﬂ"JHﬂ:'—‘ (@) | |
o true o ‘}afoyl'::OJ olher—ise false

(6‘)"40’4

Kecarsion- Exp'ofe Yvo Sscenarios

use First C°”’/l ¢aa Make Change (IS [1] 1 VcTiolag]) frue

€aq Meke Cl"“"jc.('é/ F IYS)IO\QS > " =z ©of

—

don't use Fist coin = cormake Change (16 [T T5Tiolas]) teee

CS 2110 Lecture 6: Recursion February 5, 2026

Visualizing the Call Structure

coins: [1 [5 | 10 .\.o']'ql:zN+'_| = O(ZN)

callg

(7,coins ,3) (-3,coins ,3) (2,coins ,3) (-8,coins ,3) (6,coins ,3) (-4,coins ,3) (1,coins ,3) (-9,coins ,3) 8 c9 "5

N/ N/ N/ NS

cec VlfSch (7,coins,?2) (2,coins,?2) (6,coins,2) (1,coins,2) LI .,IS
2 2 2 2
depth \ // ’\< /
i 148€ (6,coins,l) 7 call§ : :
(7,coins,1) g coins Y
ol AN ?// | :
eX¢lude
\ Coin (7,coins,0) (C qll

CS 2110 Lecture 6: Recursion February 5, 2026

Time and Space Complexity

ey execvfion of C“"Makec"'mjc Reu-.r;:ue() Joes O“)

no~-recqrsive WOCK aad allocates O(1) memory
B exFonc«vl-ql
time complexity = 0(1) % 4 colls = 0(2) bime
~

5 pace complexity = D) x récacsive < O(N)
ch%H

CS 2110 Lecture 6: Recursion February 5, 2026

