
CS 2110
February 10, 2026

Lecture 7: Sorting Algorithms

Today's Learning Outcomes

CS 2110 4

30. Compare and contrast the insertion sort, merge sort, and quicksort
algorithms, discussing aspects such as time/space complexity and
stability.

20. Describe the loop invariant of an iterative method involving an array and
visualize it using a diagram.

26. Determine the asymptotic time and space complexity of a piece of code
involving one or more loops and/or method calls.

29. Determine the number of recursive calls and the maximum depth of the
call stack of a recursive method and use these to compute its time and
space complexities.

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 5

The Importance of Sorting

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 6

Different Sorting Algorithms

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 7

Insertion Sort

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110

Coding Demo:

8

Insertion Sort

Lecture 7: Sorting Algorithms

/** Sorts `a` using the insertion sort algorithm. */
static void insertionSort(int[] a) {
 /* Loop invariant: a[..i) sorted, a[i..] unchanged. */
 for (int i = 0; i < a.length; i++) {
 insert(a,i);
 }}

/** Inserts `a[i]` into its sorted position in `a[..i)`
 * so `a[..i]` becomes sorted. Requires that
 * `0 <= i < a.length` and `a[..i)` is sorted. */
static void insert(int[] a, int i) { … }

February 10, 2026

CS 2110 9

Insertion Sort (Worst-Case) Complexity

Lecture 7: Sorting Algorithms

static void insertionSort(int[] a) {
 for (int i = 0; i < a.length; i++) {
 insert(a,i);
 }}

static void insert(int[] a, int i) {
 int j = i;
 while (j > 0 && a[j - 1] > a[j]) {
 swap(a, j - 1, j); j--;
 }}

February 10, 2026

CS 2110 11

Adaptivity and Stability

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 12

Merge Sort

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 13

The merge() Invariant

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110

Coding Demo:

14

The merge() Method

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 15

Merge Sort

Lecture 7: Sorting Algorithms

/** Sorts the entries of `a` using the merge sort algorithm. */
static void mergeSort(int[] a) {
 mergeSortRecursive(a, 0, a.length);
}

/** Recursively sorts `a[begin..end)` using the merge sort algorithm. */
static void mergeSortRecursive(int[] a, int begin, int end) {

}

February 10, 2026

CS 2110 16

Visualizing Merge Sort

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 18

Merge Sort Runtime Analysis

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 19

Merge Sort Space Complexity

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 20

Merge Sort: Other Considerations

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 22

Quicksort

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110

Coding Demo:

23

quicksort()

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 24

Quicksort Complexity Analysis

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 25

Quicksort: Other Considerations

Lecture 7: Sorting Algorithms February 10, 2026

CS 2110 26

Sorting Summary

Lecture 7: Sorting Algorithms

Algorithm Worst-Case Time
Complexity

Expected Time
Complexity

Best-Case Time
Complexity

Space
Complexity Stable? Adaptive?

Insertion Sort 𝑂(𝑁2) 𝑂(𝑁2) 𝑂(𝑁) O(1) Yes Yes

Merge Sort 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(𝑁) Yes No

Quicksort 𝑂(𝑁2) 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(log𝑁)* No No

February 10, 2026

