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30. Compare and contrast the insertion sort, merge sort, and quicksort 
algorithms, discussing aspects such as time/space complexity and 
stability.

20. Describe the loop invariant of an iterative method involving an array and 
visualize it using a diagram.

26. Determine the asymptotic time and space complexity of a piece of code 
involving one or more loops and/or method calls.

29. Determine the number of recursive calls and the maximum depth of the 
call stack of a recursive method and use these to compute its time and 
space complexities.
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The Importance of Sorting
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Different Sorting Algorithms
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Insertion Sort
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Coding Demo: 
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Insertion Sort
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/** Sorts `a` using the insertion sort algorithm. */
static void insertionSort(int[] a) {
  /* Loop invariant: a[..i) sorted, a[i..] unchanged. */
  for (int i = 0; i < a.length; i++) {
      insert(a,i);
  }}

/** Inserts `a[i]` into its sorted position in `a[..i)` 
    * so `a[..i]` becomes sorted. Requires that 
    * `0 <= i < a.length` and `a[..i)` is sorted. */
static void insert(int[] a, int i) {  … }
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Insertion Sort (Worst-Case) Complexity
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static void insertionSort(int[] a) {
    for (int i = 0; i < a.length; i++) {
        insert(a,i);
    }}

static void insert(int[] a, int i) {
    int j = i;
    while (j > 0 && a[j - 1] > a[j]) {
        swap(a, j - 1, j); j--;
    }}
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Adaptivity and Stability
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Merge Sort
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The   merge() Invariant
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Coding Demo: 
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The merge() Method
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Merge Sort
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/**  Sorts the entries of `a` using the merge sort algorithm. */
static void mergeSort(int[] a) {
  mergeSortRecursive(a, 0, a.length);
}

/**  Recursively sorts `a[begin..end)` using the merge sort algorithm. */
static void mergeSortRecursive(int[] a, int begin, int end) {

}

February 10, 2026



CS 2110 16

Visualizing Merge Sort

Lecture 7: Sorting Algorithms February 10, 2026



CS 2110 18

Merge Sort Runtime Analysis
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Merge Sort Space Complexity
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Merge Sort: Other Considerations
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Quicksort
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Coding Demo: 
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quicksort()
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Quicksort Complexity Analysis
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Quicksort: Other Considerations
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Sorting Summary
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Algorithm Worst-Case Time 
Complexity

Expected Time 
Complexity

Best-Case Time 
Complexity

Space 
Complexity Stable? Adaptive?

Insertion Sort 𝑂(𝑁2) 𝑂(𝑁2) 𝑂(𝑁) O(1) Yes Yes

Merge Sort 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(𝑁) Yes No

Quicksort 𝑂(𝑁2) 𝑂(𝑁 log𝑁) 𝑂(𝑁 log𝑁) 𝑂(log𝑁)* No No
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