Graphs

Lecture 22
CS 2112 – Fall 2014
These are not Graphs

...not the kind we mean, anyway
These are Graphs

K_5

K_{3,3}

=
Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
- ...
Graph Definitions

• A directed graph (or digraph) is a pair \((V, E)\) where
 ▪ \(V\) is a set
 ▪ \(E\) is a set of ordered pairs \((u, v)\) where \(u, v \in V\)
 ✓ Usually require \(u \neq v\) (i.e., no self-loops)

• An element of \(V\) is called a vertex (pl. vertices) or node
• An element of \(E\) is called an edge or arc

• |\(V\)| = size of \(V\), often denoted \(n\)
• |\(E\)| = size of \(E\), often denoted \(m\)
Example Directed Graph (Digraph)

\[V = \{a, b, c, d, e, f\} \]
\[E = \{(a, b), (a, c), (a, e), (b, c), (b, d), (b, e), (c, d), (c, f), (d, e), (d, f), (e, f)\} \]

\[|V| = 6, \ |E| = 11 \]
Example Undirected Graph

An *undirected graph* is just like a directed graph, except the edges are *unordered pairs (sets)* \{u,v\}

Example:

V = \{a, b, c, d, e, f\}
E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{b, c\}, \{b, d\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, e\}, \{d, f\}, \{e, f\}\}
Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u,v), respectively.
- Vertices u and v are called the endpoints of (u,v).
- Two vertices are adjacent if they are connected by an edge.
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source.
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink.
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint.
More Graph Terminology

- A **path** is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that $(v_i, v_{i+1}) \in E$, $0 \leq i \leq p - 1$

- The **length** of a path is its number of edges
 - In this example, the length is 5

- A path is **simple** if it does not repeat any vertices

- A **cycle** is a path $v_0, v_1, v_2, ..., v_p$ such that $v_0 = v_p$

- A cycle is **simple** if it does not repeat any vertices except the first and last

- A graph is **acyclic** if it has no cycles

- A directed acyclic graph is called a **dag**
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

- **Intuition:**
 - If it’s a dag, there must be a vertex with indegree zero – why?

- **This idea leads to an algorithm**
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 ▪ If it’s a dag, there must be a vertex with indegree zero – why?

• This idea leads to an algorithm
 ▪ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
Is This a Dag?

• Intuition:
 - If it’s a dag, there must be a vertex with indegree zero – why?
• This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears
We just computed a topological sort of the dag

- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints
Graph Coloring

- A **coloring** of an undirected graph is an assignment of a color to each node such that no two adjacent nodes get the same color.

Q: How many colors are needed to color this graph?
Graph Coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent nodes get the same color.

Q: How many colors are needed to color this graph?
A: 3
An Application of Coloring

- Vertices are jobs
- Edge \((u,v)\) is present if jobs \(u\) and \(v\) each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required

![Graph with colored vertices]

24
Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing

Q: Is this graph planar?
Planarity

- A graph is **planar** if it can be embedded in the plane with no edges crossing

- Q: Is this graph planar?
 - A: Yes
Planarity

- A graph is planar if it can be embedded in the plane with no edges crossing.

Q: Is this graph planar?
A: Yes
Detecting Planarity

- Kuratowski's Theorem

A graph is planar if and only if it does not contain a copy of K_5 or $K_{3,3}$ (possibly with other nodes along the edges shown)
Every planar graph is 4-colorable
(Appel & Haken, 1976)
A directed or undirected graph is **bipartite** if the vertices can be partitioned into two sets such that all edges go between the two sets.
Bipartite Graphs

- The following are equivalent:
 - G is bipartite
 - G is 2-colorable
 - G has no cycles of odd length
Traveling Salesperson

- Find a path of minimum distance that visits every city
Representations of Graphs

Adjacency List

Adjacency Matrix

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
\end{array}
\]
Adjacency Matrix or Adjacency List?

• Adjacency Matrix
- Uses space $O(n^2)$
- Can iterate over all edges in time $O(n^2)$
- Can answer “Is there an edge from u to v?” in $O(1)$ time
- Better for **dense** graphs (lots of edges) ($m \sim n^2$)

• Adjacency List
- Uses space $O(m+n)$
- Can iterate over all edges in time $O(m+n)$
- Can answer “Is there an edge from u to v?” in $O(d(u))$ time
- Better for **sparse** graphs (fewer edges) ($m \ll n^2$)

- $n = \text{number of vertices}$
- $m = \text{number of edges}$
- $d(u) = \text{outdegree of } u$
Conclusion

• Graphs are an extremely useful tool for modeling many different kinds of computational problems

• There are many efficient basic graph algorithms – depth-first search, breadth-first search, topological sort, …

• … and some not so efficient – traveling salesman, coloring

• Learn about this and more in CS4820