Lecture 9: Hash tables

CS 2112 Spring 2012
Andrew Myers

Collection implementations

<table>
<thead>
<tr>
<th></th>
<th>Unsorted sets & maps</th>
<th>Resizable arrays (array)</th>
<th>Sorted sets (search tree)</th>
<th>Stacks (array)</th>
<th>Priority queues (tree, heap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>add, push</td>
<td>O(1)</td>
<td>O(lg n)</td>
<td>O(1)</td>
<td>O(lg n)</td>
<td></td>
</tr>
<tr>
<td>get, contains, put</td>
<td>O(1)</td>
<td>O(lg n)</td>
<td></td>
<td>O(1)</td>
<td></td>
</tr>
<tr>
<td>remove, pop</td>
<td>O(1)</td>
<td>O(lg n)</td>
<td>O(1)</td>
<td>O(lg n)</td>
<td></td>
</tr>
</tbody>
</table>

Can we get the O(1) performance of arrays on general keys?

Direct Address Table

- Want a map from keys to values
- Suppose we can convert keys to different small integers
 - Example: Addresses on my street
 - Start at 1, go to 88
 - A few lots don’t have houses
- Make an array as large as the set of keys
- To find an entry, we just index to that entry of the array
 - Use null or special value to indicate absence
- Lookup operations take O(1) time!

Problem

- Want O(1) operations but with general keys
 - E.g., look up employee records by social security #
- Direct address table?
- Problem: too many SS numbers
 - Will have 10,000,000,000 mostly empty entries…
Hash functions

- Idea: define a (cheap) function to map keys onto a small range of array indices (“buckets”)
- Given an array of size 12:

 452-3425-112 (Social security number)

 \[h(x) \]

 0, 1, 2, …, 11

Collisions

- Problem: hash function may create collisions between two different keys

 452-3425-112
 \[h(x) \]
 7

 563-2332-917
 \[h(x) \]
 7

1. Cheap but avoids collisions: a function that looks as random as possible
2. Need a way to deal with collisions when they (inevitably) happen

Examples of Hash Functions

\(\text{int} \rightarrow \{0, 1, \ldots, 99\} \)

- Bad: use only part of the key
 - constant functions: \(h(x) = 7 \)
 - two most significant digits: \(h(379988) = 37 \)
 - two least significant digits: \(h(379988) = 88 \)
- Better: Use all the information in the key
 - sum of digit pairs mod 100: \(h(379988) = 37 + 99 + 88 \mod 100 = 24 \)
 - square number and take middle digits
- Best: Every change to the argument key produces an unpredictable, apparently random change to result
 - MD5 hash function, CRC (cyclic redundancy check) on key data

Collision resolution #1

- Chained buckets: array elements are linked lists
- Walk down linked list till you find
- Expected length of linked list is proportional to load factor
 - Load factor = \# elements / \# buckets
 - Good load factor ~ 1-2 for chained buckets
Implementing maps

- Map is just a set of key/value pairs
 - A String→int map with chained buckets:

Collision resolution #2: open addressing

- Just use an array of elements.
- If you find the wrong element, search elsewhere in array.
- Simple: walk forward till you find it.

Performance

- Affected by many factors:
 - Size of array relative to number of data items
 - Consider limit where there is only 1 bucket
 - as bad as simple linked lists!
 - Quality of hash function
 - Good hash functions do not lead to clustering of data → low collision rate
Analysis for Hashing with Chaining

- Analyzed in terms of *load factor* $\lambda = n/m = \text{(items in table)}/\text{(table size)}$
- Claim U is the same as the average number of items per table position $= n/m = \lambda$
- We count the expected number of *probes* (key comparisons)
- Claim S = number of probes for a *successful* search $= 1 + \lambda/2$
- Goal: Determine U = number of probes for an *unsuccessful* search

The hashCode method

- Want to store arbitrary objects, not just integers
- All Java objects have `hashCode()` method for use by hash tables
  ```java
  int hashCode();
  ```
 - By default: memory address of object
- HashCode needs to capture important information
- Hash table can handle information diffusion (randomness)

Pitfalls

- Easy to define a hash function that doesn’t seem very random
- E.g., pick the first character of string keys
 - What if all strings have the same first char?
- E.g., use the memory address
 - All addresses = 0 mod 4 or mod 8.
 - Hash table effectively four times as small if modular hashing used with power of two size
 - The Java default...

Some reasonably good hash functions

- Modular hashing: $h(k) = k \mod m$ for some $m=\#\text{buckets}$
 - But: avoid m = power of 2. Prime m is good
- Multiplicative hashing: $h(k) = (ka/2^q) \mod m$ for appropriately chosen values of a, m, and q.
 - Similar to random number generator
 - Multiplier a should be large and “random”
 - q is crucial and typically forgotten
 - Cheaper than modular hashing, works fine with power-of-2 bucket array
Universal Hashing

- Idea: choose randomly from a large collection of hash functions
- Parameterized family of numeric functions
 - e.g., \(f_{abc}(x) = ax^2 + bx + c \mod 100 \)
- Pick \(a,b,c \) at random!
- Works as well or better than hand-crafted hash functions in most cases!
- Disadvantage: no persistence

Testing a Hash Function

- If bucket \(i \) contains \(x_i \) elements, then the clustering is \((\sum x_i^2)/n) - n/m \).
- Clustering < 1: hashing is better than random
- Clustering > 1: worse than random
- Clustering = \(k \): roughly \(k \) times slower than random
 - E.g., randomly picking every other bucket gives clustering of 2.

Observations

- Hashing is popular in practice because code is easy to write and maintain and performance is typically excellent
- Performance depends on two key factors:
 - load factor \(\lambda \) = number of entries/size of array
 - choice of hash function
 - if \(\lambda \) appropriately small and hash function is chosen well, get expected \(O(1) \) complexity for all operations
- Chained hashing is faster, less fragile -- used in Java Collections
 - \texttt{java.util.HashMap} implements \texttt{java.util.Map}
 - \texttt{java.util.HashSet} implements \texttt{java.util.Set}

Table Doubling

- We know each operation takes time \(O(\lambda) \) where \(\lambda = n/m \)
- But isn’t \(\lambda = \Theta(n) \)?
- What’s the deal here? It’s still linear time!

Table Doubling:

- Set a bound for \(\lambda \) (call it \(\lambda_0 \))
- Whenever \(\lambda \) reaches this bound we
 - Create a new table, twice as big and
 - Re-insert all the data
- Easy to see operations usually take time \(O(1) \)
 - But sometimes we copy the whole table
Analysis of Table Doubling

- Suppose we reach a state with n items in a table of size m and that we have just completed a table doubling.

<table>
<thead>
<tr>
<th></th>
<th>Copying Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everything has just been copied</td>
<td>n inserts</td>
</tr>
<tr>
<td>Half were copied previously</td>
<td>$n/2$ inserts</td>
</tr>
<tr>
<td>Half of those were copied previously</td>
<td>$n/4$ inserts</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Total work</td>
<td>$n + n/2 + n/4 + ... = 2n$</td>
</tr>
</tbody>
</table>