Trees

Lecture 7
CS 2112 – Spring 2012

Tree Overview

- **Tree**: recursive data structure (similar to list)
 - Each cell may have two or more successors (or children)
 - Each cell has at most one predecessor (or parent)
 - Distinguished cell called *root* has no parent
 - All cells reachable from *root*
- **Binary tree**: tree in which each cell can have at most two children: a left child and a right child

Tree Terminology

- M is the *root* of this tree
- G is the *root* of the left subtree of M
- B, H, J, N, and S are *leaves*
- N is the *left child* of P; S is the *right child*
- P is the *parent* of N
- M and G are *ancestors* of D
- P, N, and S are *descendants* of W
- Node J is at *depth* 2 (i.e., *depth* = length of path from root = number of edges)
- Node W is at *height* 2 (i.e., *height* = length of longest path to a leaf)
- A collection of several trees is called a ?

Class for Binary Tree Cells

```java
class TreeCell<T> {
    private T datum;
    private TreeCell<T> left, right;

    public TreeCell(T x) { datum = x; }
    public TreeCell(T x, TreeCell<T> l, TreeCell<T> r) {
        datum = x;
        left = l;
        right = r;
    }

    // more methods: getDatum, setDatum, getLeft, setLeft, getRight, setRight
}
```

... new TreeCell<String>("hello") ...
Class for General Trees

class GTreeCell {
 private Object datum;
 private GTreeCell left;
 private GTreeCell sibling;
 appropriate getter and setter methods
}

• Parent node points directly only to its leftmost child
• Leftmost child has pointer to next sibling, which points to next sibling, etc

Applications of Trees

• Most languages (natural and computer) have a recursive, hierarchical structure
• This structure is implicit in ordinary textual representation
• Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
• ASTs are easier to optimize, generate code from, etc. than textual representation
• A parser converts textual representations to AST

Example

• Expression grammar:
 ▪ E → integer
 ▪ E → (E + E)

• In textual representation
 ▪ Parentheses show hierarchical structure

• In tree representation
 ▪ Hierarchy is explicit in the structure of the tree

Recursion on Trees

• Recursive methods can be written to operate on trees in an obvious way

• Base case
 ▪ empty tree
 ▪ leaf node

• Recursive case
 ▪ solve problem on left and right subtrees
 ▪ put solutions together to get solution for full tree
Searching in a Binary Tree

```
public static boolean treeSearch(Object x, TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    return treeSearch(x, node.left) ||
    treeSearch(x, node.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Binary Search Tree (BST)

```
public static boolean treeSearch (Object x, TreeCell node) {
    if (node == null) return false;
    if (node.datum.equals(x)) return true;
    if (node.datum.compareTo(x) > 0)
        return treeSearch(x, node.left);
    else return treeSearch(x, node.right);
}
```

- If the tree data are ordered – in any subtree,
 - All left descendents of node come before node
 - All right descendents of node come after node
- This makes it much faster to search

Building a BST

- To insert a new item
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
 - Tree uses alphabetical order
 - Months appear for insertion in calendar order

What Can Go Wrong?

- A BST makes searches very fast, unless...
 - Nodes are inserted in alphabetical order
 - In this case, we’re basically building a linked list (with some extra wasted space for the left fields that aren’t being used)
- BST works great if data arrives in random order
Printing Contents of BST

• Because of the ordering rules for a BST, it is easy to print the items in alphabetical order
 ▪ Recursively print everything in the left subtree
 ▪ Print the node
 ▪ Recursively print everything in the right subtree

```java
/**
 * Show the contents of the BST in alphabetical order
 */
public void show() {
    show(root);
    System.out.println();
}
private static void show(TreeNode node) {
    if (node == null) return;
    show(node.lchild);
    System.out.print(node.datum + " ");
    show(node.rchild);
}
```

Tree Traversals

• “Walking” over the whole tree is a tree traversal
 ▪ This is done often enough that there are standard names
 ▪ The previous example is an inorder traversal
 ▪ Process left subtree
 ▪ Process node
 ▪ Process right subtree
 ▪ Note: we’re using this for printing, but any kind of processing can be done

• There are other standard kinds of traversals
 ▪ Preorder traversal
 ▪ Process node
 ▪ Process left subtree
 ▪ Process right subtree
 ▪ Postorder traversal
 ▪ Process left subtree
 ▪ Process right subtree
 ▪ Process node
 ▪ Level-order traversal
 ▪ Not recursive
 ▪ Uses a queue

Some Useful Methods

```java
//determine if a node is a leaf
public static boolean isLeaf(TreeCell node) {
    return (node != null) && (node.left == null) && (node.right == null);
}

//compute height of tree using postorder traversal
public static int height(TreeCell node) {
    if (node == null) return -1; //empty tree
    if (isLeaf(node)) return 0;
    return 1 + Math.max(height(node.left), height(node.right));
}

//compute number of nodes using postorder traversal
public static int nNodes(TreeCell node) {
    if (node == null) return 0;
    return 1 + nNodes(node.left) + nNodes(node.right);
}
```

Useful Facts about Binary Trees

• 2^d = maximum number of nodes at depth d

• If height of tree is h
 ▪ Minimum number of nodes in tree = $h + 1$
 ▪ Maximum number of nodes in tree = $2^{h+1} - 1$

• Complete binary tree
 ▪ All levels of tree down to a certain depth are completely filled

```
depth
0 .......
1 ......
2 .......

Height 2, maximum number of nodes

5 2 4

Height 2, minimum number of nodes
```
Tree with Parent Pointers

- In some applications, it is useful to have trees in which nodes can reference their parents
- Analog of doubly-linked lists

Things to Think About

- What if we want to delete data from a BST?
- A BST works great as long as it’s balanced
 - How can we keep it balanced?

Suffix Trees

- Given a string s, a suffix tree for s is a tree such that
 - each edge has a unique label, which is a nonnull substring of s
 - any two edges out of the same node have labels beginning with different characters
 - the labels along any path from the root to a leaf concatenate together to give a suffix of s
 - all suffixes are represented by some path
 - the leaf of the path is labeled with the index of the first character of the suffix in s

- Suffix trees can be constructed in linear time
Suffix Trees

- Useful in string matching algorithms (e.g., longest common substring of 2 strings)
- Most algorithms linear time
- Used in genomics (human genome is ~4GB)

Huffman Trees

- Fixed length encoding

 \[197 \times 2 + 63 \times 2 + 40 \times 2 + 26 \times 2 = 652\]

- Huffman encoding

 \[197 \times 1 + 63 \times 2 + 40 \times 3 + 26 \times 3 = 521\]

Huffman Compression of “Ulysses”

<table>
<thead>
<tr>
<th>Character</th>
<th>Code</th>
<th>Value</th>
<th>Frequency</th>
<th>Huffman Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>' '</td>
<td>242125</td>
<td>00100000</td>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>'e'</td>
<td>139496</td>
<td>01101011</td>
<td>3</td>
<td>000</td>
</tr>
<tr>
<td>'t'</td>
<td>95660</td>
<td>01110100</td>
<td>4</td>
<td>1010</td>
</tr>
<tr>
<td>'g'</td>
<td>82651</td>
<td>01100001</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>'a'</td>
<td>88884</td>
<td>01011111</td>
<td>4</td>
<td>0111</td>
</tr>
<tr>
<td>'n'</td>
<td>78465</td>
<td>01101110</td>
<td>4</td>
<td>0101</td>
</tr>
<tr>
<td>'i'</td>
<td>70695</td>
<td>01101001</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>'s'</td>
<td>73186</td>
<td>01110011</td>
<td>4</td>
<td>0011</td>
</tr>
<tr>
<td>'h'</td>
<td>68625</td>
<td>01101000</td>
<td>5</td>
<td>11111</td>
</tr>
<tr>
<td>'r'</td>
<td>68320</td>
<td>01110010</td>
<td>5</td>
<td>11110</td>
</tr>
<tr>
<td>'l'</td>
<td>52657</td>
<td>01101100</td>
<td>5</td>
<td>10111</td>
</tr>
<tr>
<td>'o'</td>
<td>32942</td>
<td>01110101</td>
<td>6</td>
<td>111011</td>
</tr>
<tr>
<td>'u'</td>
<td>73186</td>
<td>01110011</td>
<td>6</td>
<td>111011</td>
</tr>
<tr>
<td>'f'</td>
<td>75248</td>
<td>01101110</td>
<td>6</td>
<td>101100</td>
</tr>
<tr>
<td>'t'</td>
<td>21361</td>
<td>01101110</td>
<td>6</td>
<td>011010</td>
</tr>
<tr>
<td>'p'</td>
<td>20861</td>
<td>01110000</td>
<td>6</td>
<td>011001</td>
</tr>
</tbody>
</table>

...

BSP Trees

- BSP = Binary Space Partition
- Used to render 3D images composed of polygons
- Each node \(n \) has one polygon \(p \) as data
- Left subtree of \(n \) contains all polygons on one side of \(p \)
- Right subtree of \(n \) contains all polygons on the other side of \(p \)
- Order of traversal determines occlusion!
Tree Summary

• A tree is a recursive data structure
 ▪ Each cell has 0 or more successors (children)
 ▪ Each cell except the root has at exactly one predecessor (parent)
 ▪ All cells are reachable from the root
 ▪ A cell with no children is called a leaf

• Special case: binary tree
 ▪ Binary tree cells have a left and a right child
 ▪ Either or both children can be null

• Trees are useful for exposing the recursive structure of
 natural language and computer programs