Today: 09/16-ribbon

- Asymptotic Complexity

Reminder:
- A2 due today

Heads-Up:
- As out soon
- Prelim in 16/15 days

Counting steps in a program

How many instructions are executed.

Ex: for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++)
 print 'x';
 printIn;
}

1: assignment, n+1 comp, n increments
2: 1 assignment, int comp, i increments
3: 1 op
4: 1 op
5: Inner for loop: increment takes two steps!
 1 + (n+1) + 2i + 1 = Ai + 2 steps

Outer for loop:
 1 + (n+1) + 2n + \sum_{i=0}^{n-1} (ai+2i)
 = 3(n+2) + 3n + \sum_{i=0}^{n-1} i
 = 6n + 2 + 2n(n-1)
 = 2n^2 + 4n + 2 steps

Remove println?
 \to a bit faster

Remove inner for loop?
 \to a lot faster

* Care about dominating parts of the program.
 \Add print in inner for loop?
 \to proportionally slower

* Constant steps don't matter

Asymptotic Complexity

Describes dominating factor in a function.

Big-O notation: Bounds the function from above.

Ex: 2n^2 + 4n + 2 is O(n^2), also O(c * n^2).

Def: \(f(n) \) is \(O(g(n)) \) if there exist
 - positive constant \(k \)
 - natural number \(n_0 \)
 such that \(f(n) \leq kg(n) \) for all \(n > n_0 \).

Ex: \(2n^2 + 4n + 2 \leq 2n^2 + 4n^2 + 2n^2 = 8n^2 \) for \(n \geq 1 \).
 \(k=2, n_0=1 \) \(\square \)

\(2n^2 + 4n + 2 \leq 8n^2 \) for \(n \geq 1 \).
 \(k=8, n_0=1 \) \(\square \)

Shortcut: \(f(n) \) is \(O(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) exists and \(< \infty \).

Ex:
 \(\lim_{n \to \infty} \frac{2n^2 + 4n + 2}{n^2} = 2 \) \(\lim_{n \to \infty} \frac{9n^2 + 4n + 2}{n^3} = 0 \)

Ex: Is \(n^2 \) \(O(n) \)?

No - show that no witness exists.

\=> Given a witness, fail it.

\="Prove by contradiction."

Suppose \(n^2 \leq kn \) for all \(n \geq n_0 \).

Choose \(n_x = \max(k, n_0) + 1 \). So, \(n_x > k \).

Then, \(n_x > kn_x \).

Thm: If \(f_1(n) \) is \(O(g_1(n)) \) and \(f_2(n) \) is \(O(g_2(n)) \), then
 \(f_1(n) + f_2(n) \) is \(O(g_1(n) + g_2(n)) \).

Also:

Ex: loop:
 \[\frac{1}{c_{f_0}} \left[O(\sum_{i=0}^{n-1} i) \right] ^{n} \in \left[O(1) \right] ^{\log n} \times \left[O(n^2) \right] \]

Families of Functions:

- \(O(1) \) constant
- \(O(n) \) linear
- \(O(n^2) \) quadratic
- \(O(n^3) \) polynomial
- \(O(k^n) \) exponential
Ex.
getConsecutiveSum(int n)

for (int i=1; i<=n; i++) {
 int sum=0;
 for (int j=i; sum<n; j++)
 sum += j;
 if (sum==n)
 // report
}

Inner loop: $O\left(\frac{n^2}{2}\right)$
Outer loop: $O\left(\sum_{i=1}^{n} \frac{n}{i}\right)$

= $O\left(n \sum_{i=1}^{n} \frac{1}{i}\right)$

= $O\left(n \log n\right)$

2. Want x such that for some k
\[x + (x+1) + \cdots + (x+k-1) = n \]
\[kx + \sum_{i=1}^{k-1} i = n \]
\[kx + \frac{k(k-1)}{2} = n \]
\[\Rightarrow \left(n - \frac{k(k-1)}{2}\right) \mod k = 0. \]

int sumk=0;
for (int k=1; sumk<n; k++) {
 if (\((n-sumk) \mod k == 0\)) {
 int x = (n-sumk)/k;
 // report
 }
 sumk += k;
}

Loop: k_{max} gives $\text{sumk} = \frac{k_{\text{max}}(k_{\text{max}}-1)}{2} > n$

\[k_{\text{max}} \approx 2.41 \sqrt{n} \]

$\Rightarrow O(\sqrt{n})$