


CS 2112 Lab: Prelim Review

September 30 / October 2, 2019



Inheritance Overview

I Language mechanism for extending and reusing code

I Different from subtyping!

I Two basic functions: Copying and Editing



Copying and Editing

I Copying is provided by the keyword extends in the method
header

I This allows you to use any functionality you included in your
superclass, as long as it is public (or protected)

I You can edit existing classes by adding or changing
functionality in a subclass

I Any time you extend a class, you create a subtyping
relationship where subclass <: superclass



An Example

1 class Robot {

2 ...

3

4 public void doSomething () { ... }

5 }

1 class SmartRobot extends Robot {

2 ...

3 private int numSomethingsDone;

4

5 public void doSomething () {

6 ...

7 numSomethingsDone ++;

8 }

9 }



Method Dispatch

1 Robot roboMan = new SmartRobot ();

2

3 roboMan.doSomething ();

Which doSomething() is called?



Method Dispatch

I The static type is Robot and the dynamic type is SmartRobot

I This method is not static, so the method doSomething() of
the dynamic type is called

I After this call, numSomethingsDone = 1



Method Dispatch

1 class Robot {

2 ...

3 public void doSomething () { ... }

4

5 public void doSomethingElse () {

6 doSomething ();

7 }

8 }

1 Robot roboMan = new SmartRobot ();

2

3 roboMan.doSomethingElse ();

Now, which doSomething() is called?



Method Dispatch

I Even if this call is made within a method of the superclass,
the doSomething() method in the subclass will still be called

I This is called late binding



Static Methods

1 public Robot {

2 static String hello () {

3 return "HELLO";

4 }

5 }

6 public SmartRobot extends Robot {

7 static String hello () {

8 return "Hello!";

9 }

10 }

1 Robot roboMan = new SmartRobot ();

2 roboMan.hello ();

What is returned?



Instance Variables

There are some rare cases where the ”copied down” view is not
quite accurate. For example, a method in the superclass can refer
to a field in the superclass that is shadowed by a field with the
same name in a subclass. If the method in the superclass refers to
this field, then it still refers to the same field even after it is copied
down to the subclass.



Static Methods

I The hello() method in the static type would be called

I That method would return ”HELLO”



Static Methods

Which will work?

1 Robot roboman = new Robot ();

2 Robot.hello ();

1 Robot roboman;

2 roboman.hello ();

1 Robot roboman = null;

2 roboman.hello ();



Constructors

I To make sure you don’t leave anything uninitialized, Java
requires that you call the superclass constructor in the first
line of your subclass constructor

I If you don’t, Java will call super() automatically



Protected Visibility

I Visibility modifier protected will be accessible to the class
and any of its subclasses

I This creates a specialization interface that allows others to
edit and expand your code without changing the public
interface

I Public and protected methods can be overridden, while private
ones cannot

I This is why it is good practice to create a specialization
interface – you can define the way in which your code can be
extended



Review

https://create.kahoot.it/share/cs-2112-2019-prelim-review/19449afd-d808-4452-863d-59d7aa78cf9e

	Inheritance Overview
	Inheritance Overview

	Method Dispatch
	Method Dispatch

	Static Methods and Constructors
	Static Methods

	Exercise
	Exercise


