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1. Reading: D. Kozen Automata and Computability, Lectures 15, 16
J. Hopcroft and J. Ullman Introduction to Automata Theory, etc., section 3.4.

2. The main message of this lecture:

The first really deep theorem of the course: for every
regular language A there exists a unique minimum state
DFA accepting A. Moreover, such an automaton can be
obtained from any DFA accepting A by pruning out inac-
cessible states and applying the minimization algorithm
(Myhill-Nerode Theorem).

Imagine that two teams have different ideas of how to write a DFA accepting the same language
A and eventually come with two different solutions M7 and M,. Naturally, we are interested in
a DFA M having the fewest number of states possible and we decide to apply the minimization
algorithm. Shall we apply minimization to both M; and M,? May be our competitor will
do even better and come with truly ingenious M3? The wonderful Myhill-Nerode Theorem
clarifies the picture immensely: in all of those cases we end up with the same minimum state
DFA M!

Definition. Two DFA are isomorphic if one of them can be obtained from another by renaming
of states. Here is the ‘official’ formulation: an isomorphism f of DFA M = (Qur, 2, dar, Sars Fir)
and N = (Qn,X%,0n,8n,Fn) is a one-to-one and onto mapping from Qs to Qx preserving
‘start’, ‘accept’ and the transition function: f(sa) = sy, p€Fu < f(p)€Fn, f(0m(p,a)) =
O0n(f(p),a). Isomorphic automata have equal number of states, similar ‘start’ and ’accept’
states, identical transition functions, and accept the same regular languages.

Definition. An indez of an equivalence relation ~ on () is the number of equivalence classes
with respect to ~. An equivalence relation = is a finer than an equivalence relation =9 (= is
coarser than ~1) if every equivalence class of ~; is entirely contained in some equivalence class
of o: TR1y = x =9 y. An equivalence relation = refines a set R if every equivalence class
of = is either entirely in R or entirely in ~ R: z =~gpy = (z€R & y€R). An equivalence
relation = on X* is a right congruence if x &y = zz = yz for each strings z,y, z € X.*.

Definition. Let R C X*. We define an equivalence relation =g on X* as

z=py & VzeX'(zzeR & yz€cR).
Example 14.1. R = {a® | n > 0} = {¢,aa,aaaq,...}. Here =g has index 2, i.e. there are
only two equivalence classes: [¢] = {¢, aa,aaaaq,...} = R and [a] = {a,aaqa, aaqaaq,...} = Ra.

Example 14.2. R = {a”2 | n > 0} = {ea,a*a®,...}. Here =g is of infinite index, i.e.
there are infinitely many equivalence classes here. Indeed, it is easy to check that any two
elements of R are not equivalent and hence generate distinct equivalence classes. For example,
[a] #R [aaaa], since a - aaa = a* € R, but aaaa - aaa = a” ¢ R.

Note that R from 14.1 is regular whereas R from 14.2 is not.



Lemma 14.3. =p is a right congruence refining R and is the coarsest such relation on X*.

Proof. Right congruence: Let z =g vy, i.e. Vz€X*(zz€ R < yz€ R). Then zw =g yw for
any string w. Indeed, for any string z

(zw)z€R & z(wz)eR & y(wz)eR & (yw)z€R).

Refines R: take z = € in the definition of x =g y and get (t€R < y€R).
=p is the coarsest: let = is a right congruence refining R. Then

r=y = Vz(zz=yz) = Vz(rz€R & yz€R) = z=gy.

Theorem 14.4 (Myhill-Nerode Theorem) Let R C X*. Then R is regular if and only if the
relation =g is of finite index.

Proof. Let R = L(M) for some DFA M. Define an equivalence relation z =;; y on strings
over ¥ as d(s,z) = 0(s,y). =p is a rlght congruence: T =y y = 0(s,z) = d(s,y) =
5(8(s,z),2) = g(g(s,y),/z\) = (5&9 xz) = 6(3 yz) = wzz =y yz. It is also clear that =y
refines R: z =y y = 0(s,2) = 6(s,y) = (8(s,z)eF < d(s,y)€F) = (z€R & yeR).
By lemma 14.3 , =g is coarser than =j;. In particular, =p has less equivalence classes than
=)s. Note that =), is of finite index, since the number of equivalence classes for z =) y does
not exceed the number of states in M. Therefore =g is also of finite index not exceeding the
number of states in M.

Let now =g be of finite index. Define M® = (Q,%,4,s, F) such that Q = (R/ =g
) (a finite set of equivalence classes with respect to =g), 6([z],a) = [za], s = [¢], F =
{lz] | = € R}. We claim that d([z],y) = [zy]. Induction on |y|. The induction base
is secured by the definition of § above. The induction step: &([z],ya) = §(6([z],y),a) =
§([zy],a) (by the induction hypothesis) = [zya]. Claim: R = L(MF%). Indeed,

zeL(M?) & §(jd,z)eF & [ez]eF & [z]eF & zeR.
Corollary 14.5 MFE has the fewest number of states among all DFAs accepting R.

Corollary 14.6 The collapsing minimization algorithm returns a DFA isomorphic to M*.

Proof. Let N/~ = (Q',%,d',s',F') be the collapsed automaton accepting R, and M* as
in Theorem 14.4. We define an isomorphism f from Mg to N/ ~: f([z]) = §'(s',z). The
mapping f is one-to-one. Indeed, suppose f([z]) = f([y]), ie. 5\’(3’,:1:) = g’(s’,y). Then
88 (s, z), z) = 6'(8'(s', y) z), 8(s',x2) = 0'(s',yz), 1z€ R < yz€R, therefore [z] = [y]. f is
onto, since each state ¢’ €@’ in N / ~ is accessible: there exists = such that ¢' = §(s’, z). Start
state: f(s) = f([e]) = §'(s',€) = s'. Accept states: [z]e F & z€R (above) & §'(s',z) €
F' (since N accepts R) < f([z]) € F' (definition of f). Let us do the transition function.

F(6([],)) = f([za)) = §'(s', za) = §'(3'(', z),a) = &' (f([x], ).

Example 14.7 The Myhill-Nerode automaton for R = {a?" | n > 0} from Example 14.1 has
two states [¢] = R and [a] = Ra, s = [¢], F = {R} = {[€]}, 0([¢], a) = [a], d([a],a) = [€].

Problem 14.1 {53 from Kozen p. 329.
Problem 14.2 §55a from Kozen p. 329.



