- 1. Reading: D. Kozen Automata and Computability, Lectures 15, 16
- J. Hopcroft and J. Ullman Introduction to Automata Theory, etc., section 3.4.
- 2. The main message of this lecture:

The first really deep theorem of the course: for every regular language A there exists a unique minimum state DFA accepting A. Moreover, such an automaton can be obtained from any DFA accepting A by pruning out inaccessible states and applying the minimization algorithm (Myhill-Nerode Theorem).

Imagine that two teams have different ideas of how to write a DFA accepting the same language A and eventually come with two different solutions M_1 and M_2 . Naturally, we are interested in a DFA M having the fewest number of states possible and we decide to apply the minimization algorithm. Shall we apply minimization to both M_1 and M_2 ? May be our competitor will do even better and come with truly ingenious M_3 ? The wonderful Myhill-Nerode Theorem clarifies the picture immensely: in all of those cases we end up with the same minimum state DFA M!

Definition. Two DFA are isomorphic if one of them can be obtained from another by renaming of states. Here is the 'official' formulation: an isomorphism f of DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ and $N = (Q_N, \Sigma, \delta_N, s_N, F_N)$ is a one-to-one and onto mapping from Q_M to Q_N preserving 'start', 'accept' and the transition function: $f(s_M) = s_N, p \in F_M \Leftrightarrow f(p) \in F_N, f(\delta_M(p, a)) = \delta_N(f(p), a)$. Isomorphic automata have equal number of states, similar 'start' and 'accept' states, identical transition functions, and accept the same regular languages.

Definition. An index of an equivalence relation \approx on Q is the number of equivalence classes with respect to \approx . An equivalence relation \approx_1 is a finer than an equivalence relation \approx_2 (\approx_2 is coarser than \approx_1) if every equivalence class of \approx_1 is entirely contained in some equivalence class of \approx_2 : $x \approx_1 y \implies x \approx_2 y$. An equivalence relation \approx refines a set R if every equivalence class of \approx is either entirely in R or each strings R is each string R or each strings R or e

Definition. Let $R \subseteq \Sigma^*$. We define an equivalence relation \equiv_R on Σ^* as

$$x \equiv_R y \Leftrightarrow \forall z \in \Sigma^* (xz \in R \Leftrightarrow yz \in R).$$

Example 14.1. $R = \{a^{2n} \mid n \geq 0\} = \{\epsilon, aa, aaaa, \ldots\}$. Here \equiv_R has index 2, i.e. there are only two equivalence classes: $[\epsilon] = \{\epsilon, aa, aaaa, \ldots\} = R$ and $[a] = \{a, aaa, aaaaa, \ldots\} = Ra$.

Example 14.2. $R = \{a^{n^2} \mid n \geq 0\} = \{\epsilon, a, a^4, a^9, \ldots\}$. Here \equiv_R is of infinite index, i.e. there are infinitely many equivalence classes here. Indeed, it is easy to check that any two elements of R are not equivalent and hence generate distinct equivalence classes. For example, $[a] \not\equiv_R [aaaa]$, since $a \cdot aaa = a^4 \in R$, but $aaaa \cdot aaa = a^7 \not\in R$.

Note that R from 14.1 is regular whereas R from 14.2 is not.

Lemma 14.3. \equiv_R is a right congruence refining R and is the coarsest such relation on Σ^* .

Proof. Right congruence: Let $x \equiv_R y$, i.e. $\forall z \in \Sigma^* (xz \in R \iff yz \in R)$. Then $xw \equiv_R yw$ for any string w. Indeed, for any string z

$$(xw)z \in R \iff x(wz) \in R \iff y(wz) \in R \iff (yw)z \in R).$$

Refines R: take $z = \epsilon$ in the definition of $x \equiv_R y$ and get $(x \in R \Leftrightarrow y \in R)$. \equiv_R is the coarsest: let \equiv is a right congruence refining R. Then

$$x \equiv y \quad \Rightarrow \quad \forall z (xz \equiv yz) \quad \Rightarrow \quad \forall z (xz \in R \iff yz \in R) \quad \Rightarrow \quad x \equiv_R y.$$

Theorem 14.4 (Myhill-Nerode Theorem) Let $R \subseteq \Sigma^*$. Then R is regular if and only if the relation \equiv_R is of finite index.

Proof. Let R = L(M) for some DFA M. Define an equivalence relation $x \equiv_M y$ on strings over Σ as $\widehat{\delta}(s,x) = \widehat{\delta}(s,y)$. \equiv_M is a right congruence: $x \equiv_M y \Rightarrow \widehat{\delta}(s,x) = \widehat{\delta}(s,y) \Rightarrow \widehat{\delta}(s,x), z) = \widehat{\delta}(\widehat{\delta}(s,y),z) \Rightarrow \widehat{\delta}(s,xz) = \widehat{\delta}(s,yz) \Rightarrow xz \equiv_M yz$. It is also clear that \equiv_M refines R: $x \equiv_M y \Rightarrow \widehat{\delta}(s,x) = \widehat{\delta}(s,y) \Rightarrow (\widehat{\delta}(s,x) \in F \Leftrightarrow \widehat{\delta}(s,y) \in F) \Rightarrow (x \in R \Leftrightarrow y \in R)$. By lemma 14.3, \equiv_R is coarser than \equiv_M . In particular, \equiv_R has less equivalence classes than \equiv_M . Note that \equiv_M is of finite index, since the number of equivalence classes for $x \equiv_M y$ does not exceed the number of states in M. Therefore \equiv_R is also of finite index not exceeding the number of states in M.

Let now \equiv_R be of finite index. Define $M^R=(Q,\Sigma,\delta,s,F)$ such that $Q=(R/\equiv_R)$ (a finite set of equivalence classes with respect to \equiv_R), $\delta([x],a)=[xa]$, $s=[\epsilon]$, $F=\{[x]\mid x\in R\}$. We claim that $\widehat{\delta}([x],y)=[xy]$. Induction on |y|. The induction base is secured by the definition of δ above. The induction step: $\widehat{\delta}([x],ya)=\delta(\widehat{\delta}([x],y),a)=\delta([xy],a)$ (by the induction hypothesis) =[xya]. Claim: $R=L(M^R)$. Indeed,

$$x \in L(M^R) \iff \hat{\delta}([\epsilon], x) \in F \iff [\epsilon x] \in F \iff [x] \in F \iff x \in R.$$

Corollary 14.5 M^R has the fewest number of states among all DFAs accepting R.

Corollary 14.6 The collapsing minimization algorithm returns a DFA isomorphic to M^R .

Proof. Let $N/\approx = (Q', \Sigma, \delta', s', F')$ be the collapsed automaton accepting R, and M^R as in Theorem 14.4. We define an isomorphism f from M_R to N/\approx : $f([x]) = \hat{\delta}'(s', x)$. The mapping f is one-to-one. Indeed, suppose f([x]) = f([y]), i.e. $\hat{\delta}'(s', x) = \hat{\delta}'(s', y)$. Then $\hat{\delta}'(\hat{\delta}'(s', x), z) = \hat{\delta}'(\hat{\delta}'(s', y), z)$, $\hat{\delta}'(s', xz) = \hat{\delta}'(s', yz)$, $xz \in R \Leftrightarrow yz \in R$, therefore [x] = [y]. f is onto, since each state $q' \in Q'$ in N/\approx is accessible: there exists x such that $q' = \hat{\delta}(s', x)$. Start state: $f(s) = f([\epsilon]) = \hat{\delta}'(s', \epsilon) = s'$. Accept states: $[x] \in F \Leftrightarrow x \in R$ (above) $\Leftrightarrow \hat{\delta}'(s', x) \in F'$ (since N accepts R) $\Leftrightarrow f([x]) \in F'$ (definition of f). Let us do the transition function. $f(\delta([x], a)) = f([xa]) = \hat{\delta}'(s', xa) = \delta'(\hat{\delta}'(s', x), a) = \delta'(f([x], a)$.

Example 14.7 The Myhill-Nerode automaton for $R = \{a^{2n} \mid n \geq 0\}$ from Example 14.1 has two states $[\epsilon] = R$ and [a] = Ra, $s = [\epsilon]$, $F = \{R\} = \{[\epsilon]\}$, $\delta([\epsilon], a) = [a]$, $\delta([a], a) = [\epsilon]$.

Problem 14.1 \$53 from Kozen p. 329.

Problem 14.2 \$55a from Kozen p. 329.