Today

• Two application-layer protocols:
 – DNS
 – HTTP
Domain Name Service

- When a user wants to communicate with a remote node, is it easier to remember 69.63.176.13 or www.facebook.com?
- Human-friendly names are given to nodes.
- Simultaneously, a translation mechanism should exist between names and IP addresses.
 - Packets need IP addresses to be transmitted.
- Will we use arbitrary or well-structured names? Why?
 - It affects the efficiency of the translation mechanism.
- Nowadays, we use Domain Names.
 - Well-structured strings.
 - Multiple labels separated by dots.
 - They create a hierarchical Domain Name Space.
- Use:
 - Emails, web sites
Hierarchical Domain Space

- Every domain name should belong to this tree.

- When a process wants to send data to www.facebook.com, somebody needs to provide the IP translation. Who?

- Domain Name Service (DNS)
DNS

- Can we have only one server in the network which would provide the translations of all domain names? Why?
- DNS uses multiple DNS resolvers (servers) in the network and the translations are distributed among them. How?
- Each DNS resolver is responsible for a subset of the Domain Name space.
Example:

Suppose we want to access www.cs.cornell.edu.

First, the DNS resolver in the OS contacts root DNS server and asks if it knows the translation of www.cs.cornell.edu.

The root does not know the translation, but it knows the DNS server that is responsible for .edu addresses. Thus, it forwards the request there.

The DNS server for .edu does not know the translation, but it knows the DNS server responsible for the cornell.edu addresses. Thus, it forwards the request there.

The DNS server for cornell.edu does not know the translation, but it knows the DNS server responsible for the cs.cornell.edu addresses. Thus, it forwards the request there.

Finally, the DNS server for cs.cornell.edu addresses sends the IP address of the website www.cs.cornell.edu.

Improvement:

One or more of these DNS servers may have cached the translation from previous requests, accelerating the DNS query.
HTTP

• HyperText Transfer Protocol
 – The Web’s applications-layer protocol.

• https://studentessentials.cornell.edu/

• HTTP defines how Web clients request Web pages from Web servers and how servers transfer Web pages to clients.

• HTTP uses TCP as its underlying transport protocol.
HTTP

• A user requests a Web page.
• The browser sends HTTP requests messages for the objects in the page to the server.
• The server receives the requests and responds with HTTP response messages that contain the objects.
HTTP
• Request Message:
 GET /somedir/page.html HTTP/1.1
 Host: www.someschool.edu
 Connection: close
 User-agent: Mozilla/4.0
 Accept-language: en

• Response Message:
 HTTP/1.1 200 OK
 Connection: close
 Date: Thu, 07 Jul 2007 12:00:15 GMT
 Server: Apache/1.3.0
 Last-Modified: Thu, 07 Jul 2007 12:00:15 GMT
 Content-Length: 6821
 Content-Type: text/html
 (data data ... data)
End-to-End Argument

- Should the network guarantee packet delivery?
 - Think about a file transfer program.
 - Read file from disk, send it, the receiver reads packets and writes them to the disk.
- If the network guaranteed packet delivery, one might think that the applications would be simpler
 - No need to worry about retransmits.
 - But still need to check that the file was written to the remote disk intact.
- A check is necessary if nodes can fail
 - Consequently, applications need to be written to perform their own retransmits.
 - No need to burden the internals of the network with properties that can, and must, be implemented at the periphery.
End-to-End Argument

- Application-specific properties are best provided by the applications, not the network.
 - Guaranteed, or ordered, packet delivery, duplicate suppression, security, etc.
- The Internet performs the simplest packet routing and delivery service it can.
 - Packets are sent on a best-effort basis.
 - Higher-level applications do the rest.
Today

• Two application-layer protocols:
 – DNS
 – HTTP
Coming up...

• Next lecture: Security