N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ“ﬂ%ﬂ%ﬂ&ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NZANYZANYZANYZAN\YAN\ YA\

FJANVIANVIANVIANVIANVIANVIANYS

(54414: RECITATION 7 — TEMPLATES | °°°°°°°°°°° 0, 2023

MOTIVATION
RECAP: LECTURE 10 (2/22)

Why devote the recitation to a topic (i.e., templates)
previously introduced in lecture?

Ken Birman, 2/22/23:

“The most awesome feature of C++ ... they
(templates) are at the core of why we find C++ to be
such a good systems language.”

“(Templates) let us reprogram the behavior of the
compiler in a really mind-bending way.”

RECAP: LECTURE 10 (2/22)

C++ templates are (sort of) analogous to Java generics

Benefit of former is that they are a compile-time
construct unlike the latter which is a run-time construct

As a result, resulting code is super fast!

E.g., C++ can’t determine in an object by object list
which methods to apply on objects of subclass versus
class because that requires runtime analysis (which Java
can do)

(+-+ ADVANTAGE? (LECTURE SLIDE)

It centers on the compile-time type resolution. Impact? The
resulting code is blazingly fast.

In fact, C++ wizards talk about the idea that at runtime, all
the fancy features are gone, and we are left with “plain old
data” and logic that touches that data mapped to a form of

C.

The job of C++ templates is to be as expressive as possible
without ever requiring any form of runtime reflection.

SUMMARY OF TEMPLATE GOALS (LECTURE SLIDE)

Compile time type checking and type-based specialization.
A way to create classes that are specialized for different types
Conditional compilation, with dead code automatically removed

Code polymorphism and varargs without runtime polymorphism

4444444444444444444444444

THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE
SLIDE)

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:

int myArray[10];

With a template, the user supplies a type by coding something like
Things<long>. Internally, the class might say something like:

template<Typename T>
T myArray[10];

4444444444444444444444444

' THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE
SLIDE)

As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:

int myArray[10];

Wi-l-h a ’rempld T behaves like a vqt'iab.le, but !he “value” is nd we express
fhiS b . . some type, like int or Bignum

myArray[10];

4444444444444444444444444

YOU CAN ALSO TEMPLATE A CLASS (LECTURE
SLIDE)

TEMPLATED FUNCTIONS (LECTURE SLIDE)

Templates can also be associated with individual functions.
The entire class can have a type parameter, but a function
can have its own (perhaps additional) type parameters

This really should require that T be a type

Template<typename T> supporting “comparable”.
T max(T a, T b)
{
return a>b? a : b; // T must supporta > b

}

4444444444444444444444444

QUICK ASIDE: TEMPLATE HPP FILES DON'T COME
WITH ASSOCIATED CPP FILES

C++ often generates implementation file code internally
for each type parameter from the template code in hpp
file

Remember: the compiler generates for each different

type parameter that got used

FUNCTION TEMPLATES (LECTURE SLIDE)

Nothing special has to be done to use a function template

int main(int argc, char* argv[]) {
int a=3,b=717;
double x = 3.14, y = 2.71;

cout << max(a, b) << endl; // Instantiated with type int
cout << max(x, y) << endl; // Instantiated with type double
cout << max(a, x) << endl; // ERROR: types do not match

cout is templated. The type is automatically inferred by C++

CORNELL CS4414 - SPRING 2023

11

MOTIVATION

* Your boss wants you to build a digital calculator

* You come up with something like this

recitation > 7 > € func_t.cpp > @ main
' #include <iostream>
2 using namespace std; // don't do this, it's lazy!

. int subtract(int a, int b) {
5 return a-b;

int main () {

L
int x=16, y=7, z;
106 z=subtract(x,y);

11 cout << z << endl;

MOTIVATION

* But calculators should be qble:’»rgvsgb;r__r‘qq floats and
doubles too! And much more... @ s coeem

using namespace std; // don't do this, it's
. 4 int subtract(int a, int b) {
* So you come up with
. ;
'I'h'S. .o double subtractDouble(double a, double b) {

return a-b;
[~ P\
e W
float subtractFloat(flocat a, float b) {
return a-b;

int main () {
int x=10, y=7, z;
z=subtract(x,y);
cout << z << endl;

lazy!

SOLUTION: FUNCTION TEMPLATES

What if you could just replace int with a generic data type
How? Let’s codel

Limitation in shown example: parameters in subtract() must
share type

Uh-oh!
No worries actually — let’s code again!

Break (15 minutes)
1. TA feedback form (check email) ~10 mins
2. Break ~5 mins

CLASS TEMPLATES

Let’s codel

MOTIVATION

Your boss tells you that you're going to be streaming data
of various types, but you need to treat data of type char
in a special manner

Step 1: You need to be able to identify which data is of
type char compared to other types

But how?
Let’s codel

HOW DO WE USE TEMPLATES WHEN OUR FUNCTION
HAS AN ARBITRARY NUMBER OF PARAMETERS?

Common issue...
Solution: Variadic templates
Let’s code!

SUMMARY

Templates let us move away from hardcoding types earlier on
in our code so that our code can be more generic

Templates allow us to specialize the treatment of select types
while applying the default operations on all others

C++ templates are compile-time constructs and thus must be
implemented in a manner supporting such constraints

Variadic templates let us leverage template benefits despite
arbitrary number of parameters in function

