
CS4414: RECITATION 7 – TEMPLATES Ricky Takkar
Friday, March 10, 2023

MOTIVATION
RECAP: LECTURE 10 (2/22)
­Why devote the recitation to a topic (i.e., templates)
previously introduced in lecture?
­Ken Birman, 2/22/23:
­“The most awesome feature of C++ ... they
(templates) are at the core of why we find C++ to be
such a good systems language.”
­“(Templates) let us reprogram the behavior of the
compiler in a really mind-bending way.”

2

RECAP: LECTURE 10 (2/22)

­C++ templates are (sort of) analogous to Java generics
­Benefit of former is that they are a compile-time
construct unlike the latter which is a run-time construct
­As a result, resulting code is super fast!
­E.g., C++ can’t determine in an object by object list
which methods to apply on objects of subclass versus
class because that requires runtime analysis (which Java
can do)

3

C++ ADVANTAGE? (LECTURE SLIDE)

It centers on the compile-time type resolution. Impact? The
resulting code is blazingly fast.

In fact, C++ wizards talk about the idea that at runtime, all
the fancy features are gone, and we are left with “plain old
data” and logic that touches that data mapped to a form of
C.

The job of C++ templates is to be as expressive as possible
without ever requiring any form of runtime reflection.

4

SUMMARY OF TEMPLATE GOALS (LECTURE SLIDE)

Compile time type checking and type-based specialization.

A way to create classes that are specialized for different types

Conditional compilation, with dead code automatically removed

Code polymorphism and varargs without runtime polymorphism

CORNELL CS4414 - SPRING 2023 5

THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE
SLIDE)
As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:
int myArray[10];

With a template, the user supplies a type by coding something like
Things<long>. Internally, the class might say something like:

template<Typename T>
T myArray[10];

CORNELL CS4414 - SPRING 2023 6

THE BASIC IDEA IS EXTREMELY SIMPLE (LECTURE
SLIDE)
As a concept, a template could not be easier to understand.

Suppose we have an array of objects of type int:
int myArray[10];

With a template, the user supplies a type (T) and we express
this by just coding:

T myArray[10];

CORNELL CS4414 - SPRING 2023 7

T behaves like a variable, but the “value” is
some type, like int or Bignum

YOU CAN ALSO TEMPLATE A CLASS (LECTURE
SLIDE)

template<typename T>
class Things {

T myArray[10];
T getElement(int);
void setElement(int,T);

}

CORNELL CS4414 - SPRING 2023 8

TEMPLATED FUNCTIONS (LECTURE SLIDE)

Templates can also be associated with individual functions.
The entire class can have a type parameter, but a function
can have its own (perhaps additional) type parameters

Template<typename T>
T max(T a, T b)
{

return a>b? a : b; // T must support a > b
}

CORNELL CS4414 - SPRING 2023 9

This really should require that T be a type
supporting “comparable”.

QUICK ASIDE: TEMPLATE HPP FILES DON’T COME
WITH ASSOCIATED CPP FILES

§ C++ often generates implementation file code internally
for each type parameter from the template code in hpp
file
§Remember: the compiler generates for each different
type parameter that got used

10

FUNCTION TEMPLATES (LECTURE SLIDE)

Nothing special has to be done to use a function template

cout is templated. The type is automatically inferred by C++

int main(int argc, char* argv[]) {
int a = 3, b = 7;
double x = 3.14, y = 2.71;

cout << max(a, b) << endl; // Instantiated with type int
cout << max(x, y) << endl; // Instantiated with type double
cout << max(a, x) << endl; // ERROR: types do not match

}

CORNELL CS4414 - SPRING 2023 11

MOTIVATION

• Your boss wants you to build a digital calculator

• You come up with something like this

12

MOTIVATION

• But calculators should be able to subtract floats and
doubles too! And much more…

• So you come up with

this…

•😭

13

SOLUTION: FUNCTION TEMPLATES

•What if you could just replace int with a generic data type

• How? Let’s code!

• Limitation in shown example: parameters in subtract() must
share type

• Uh-oh!
• No worries actually – let’s code again!

14

Break (15 minutes)
1. TA feedback form (check email) ~10 mins
2. Break ~5 mins

15

CLASS TEMPLATES

• Let’s code!

16

MOTIVATION

• Your boss tells you that you’re going to be streaming data
of various types, but you need to treat data of type char
in a special manner
• Step 1: You need to be able to identify which data is of
type char compared to other types
• But how?
• Let’s code!

17

HOW DO WE USE TEMPLATES WHEN OUR FUNCTION
HAS AN ARBITRARY NUMBER OF PARAMETERS?

• Common issue…
• Solution: Variadic templates
• Let’s code!

18

SUMMARY

• Templates let us move away from hardcoding types earlier on
in our code so that our code can be more generic

• Templates allow us to specialize the treatment of select types
while applying the default operations on all others

• C++ templates are compile-time constructs and thus must be
implemented in a manner supporting such constraints

• Variadic templates let us leverage template benefits despite
arbitrary number of parameters in function

19

