Triangle meshes I

CS 4620 Lecture 2
Shape
spheres

approximate sphere

Andrzej Barabasz

Rineau & Yvinec
CGAL manual
finite element analysis
A small triangle mesh

12 triangles, 8 vertices
A large mesh

10 million triangles from a high-resolution 3D scan
about a trillion triangles from automatically processed satellite and aerial photography
Triangles

• Defined by three vertices
• Lives in the plane containing those vertices
• Vector normal to plane is the triangle’s normal
• Conventions (for this class, not everyone agrees):
 – vertices are counter-clockwise as seen from the “outside” or “front”
 – surface normal points towards the outside (“outward facing normals”)

Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a piecewise planar surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join
- Often, it’s a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don’t want to see them
Representation of triangle meshes

• Compactness
• Efficiency for rendering
 – enumerate all triangles as triples of 3D points
• Efficiency of queries
 – all vertices of a triangle
 – all triangles around a vertex
 – neighboring triangles of a triangle
 – (need depends on application)
 • finding triangle strips
 • computing subdivision surfaces
 • mesh editing
Representations for triangle meshes

• Separate triangles
• Indexed triangle set — shared vertices
• Triangle strips and triangle fans — compression schemes for fast transmission
• Triangle-neighbor data structure — supports adjacency queries
• Winged-edge data structure — supports general polygon meshes

© 2015 Kavita Bala •
(with previous instructor Marschner)
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>tris[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[1]</td>
</tr>
<tr>
<td>x_0, y_0, z_0</td>
<td>x_2, y_2, z_2</td>
</tr>
<tr>
<td>x_0, y_0, z_0</td>
<td>x_3, y_3, z_3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(x_1, y_1, z_1)
(x_0, y_0, z_0)
(x_2, y_2, z_2)
(x_3, y_3, z_3)

T_0
T_1
Separate triangles

• array of triples of points
 – float[n_T][3][3]: about 72 bytes per vertex
 • 2 triangles per vertex (on average)
 • 3 vertices per triangle
 • 3 coordinates per vertex
 • 4 bytes per coordinate (float)

• various problems
 – wastes space (each vertex stored 6 times)
 – cracks due to roundoff
 – difficulty of finding neighbors at all
Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

\[
\begin{array}{c|c}
\text{verts[0]} & x_0, y_0, z_0 \\
\text{verts[1]} & x_1, y_1, z_1 \\
& x_2, y_2, z_2 \\
& x_3, y_3, z_3 \\
\vdots & \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{tInd[0]} & 0, 2, 1 \\
\text{tInd[1]} & 0, 3, 2 \\
\vdots & \\
\end{array}
\]
Estimating storage space

- $n_T = \text{#tris}; n_V = \text{#verts}; n_E = \text{#edges}$

- Euler: $n_V - n_E + n_T = 2$ for a simple closed surface
 - and in general sums to small integer
 - argument for implication that $n_T:n_E:n_V$ is about 2:3:1

[Foley et al.]
- \(n_T = \) #tris; \(n_V = \) #verts; \(n_E = \) #edges

- Euler: \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer
 - argument for implication that \(n_T:n_E:n_V \) is about 2:3:1
Indexed triangle set

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Data on meshes

• Often need to store additional information besides just the geometry
• Can store additional data at faces, vertices, or edges
• Examples
 – colors stored on faces, for faceted objects
 – information about sharp creases stored at edges
 – any quantity that varies *continuously* (without sudden changes, or *discontinuities*) gets stored at vertices
Key types of vertex data

• Surface normals
 – when a mesh is approximating a curved surface, store normals at vertices

• Texture coordinates
 – 2D coordinates that tell you how to paste images on the surface

• Positions
 – at some level this is just another piece of data
 – position varies continuously between vertices
Differential geometry 101

- **Tangent plane**
 - at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the *tangent plane*

- **Normal vector**
 - vector perpendicular to a surface (that is, to the tangent plane)
 - only unique for smooth surfaces (not at corners, edges)
Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is *parameterizing* the surface
- Examples:
 - cartesian coordinates on a rectangle (or other planar shape)
 - cylindrical coordinates \((\theta, y)\) on a cylinder
 - latitude and longitude on the Earth’s surface
 - spherical coordinates \((\theta, \phi)\) on a sphere
Example: unit sphere

- position:
 \[x = \cos \theta \sin \phi \]
 \[y = \sin \theta \]
 \[z = \cos \theta \cos \phi \]

- normal is position (easy!)
How to think about vertex normals

• Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases

• But the surface normals don’t converge so well

• Better: store the “real” normal at each vertex, and interpolate to get normals that vary gradually across triangles
Interpolated normals—2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2

8%, 11° 2%, 6° 0.5%, 3°