
CS 4700:
Foundations of

Artificial Intelligence

Fall 2019
Prof. Haym Hirsh

Lecture 12
October 28, 2019

Multi-Armed Bandit

. . . .

R1 R2 R3 R4 Rn

a1 a2 a3 a4 an

What strategy do I use to pick a sequence of ai?

. . . . M1 M2 M3 M4 Mn

View Multi-Armed Bandit as a Single-State MDP

R(s,ai,s)
P(s|s,ai)=1.0

a1

a2

an

…

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Algorithm:

For i ← 1 to n { Sumi ← R(armi); Ni ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax
1≤i≤n

[
Sumi

Ni
+
g(N)

Ni
]

pull arm abest and get reward r

Sumbest ← Sumbest + r; Nbest ← Nbest + 1; N ← N+1

Pull each
arm once

g(N) = 2 log (1 + N log2N)

g(N) = c ln(N)

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Algorithm:

For i ← 1 to n { Sumi ← R(armi); Ni ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax
1≤i≤n

[
Sumi

Ni
+

2 ln(N)

Ni
]

pull arm abest and get reward r

Sumbest ← Sumbest + r; Nbest ← Nbest + 1; N ← N+1

Pull each
arm once

g(N) = 2 log (1 + N log2N)

g(N) = c ln(N)

[c = 2]

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Average reward:
σ𝑖=1
n Sum𝑖

N

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Average reward:
σ𝑖=1
n Sum𝑖

N

Average reward for a policy π: µN
π = Eπ

σ𝑖=1
n Sum𝑖

N

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Average reward:
σ𝑖=1
n Sum𝑖

N

Average reward for a policy π: µN
π = Eπ

σ𝑖=1
n Sum𝑖

N

Average expected reward for always picking optimal arm: µbest

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Average reward:
σ𝑖=1
n Sum𝑖

N

Average reward for a policy π: µN
π = Eπ

σ𝑖=1
n Sum𝑖

N

Average expected reward for always picking optimal arm: µbest

Regret for a policy: regretN
π = µbest - µN

π

How much exploration costs you

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Known Result:
RegretN

π = Ω(log(N))

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Your expected regret
will grow at least

logarithmically with N

Why g(N) = 2 log (1 + N log2 N)?

Why g(N) = c ln(N)?

Known Result:
RegretN

π = Ω(log(N))

RegretN
UCB(g(N))= O(log(N))

Multi-Armed Bandits:
Upper Confidence Bound (UCB) Heuristic

Your expected regret
will grow at least

logarithmically with N

UCB with these g(N) functions have regret that
grows at worst logarithmically with N

Monte Carlo Tree Search (MCTS)
(Section 5.4)

Monte Carlo Tree Search (MCTS)
(Section 5.4)

Application of multi-armed bandits

Timeline of Key Ideas in Game Tree Search

1948 Alan Turing Look ahead and use an evaluation function

1950 Claude Shannon Game tree search

1956 John McCarthy Alpha-beta pruning

1959 Arthur Samuel Learn evaluation function (Reinforcement learning)

…

1997: Deep Blue defeats Gary Kasparov (3½–2½)

Game tree search with alpha-beta pruning
plus lots of enhancements

1997: Deep Blue defeats Gary Kasparov (3½–2½)

Game tree search with alpha-beta pruning
plus lots of enhancements

(Not “deep” as in “deep learning”)
(Deep as in its ancestor, Deep Thought)

Go?

Branching factor is in the 100s

Evaluation function is difficult because payoff may be very far away

Need new ideas

1983 Bruce Ballard Lookahead for probabilistic moves

1987 Bruce Abramson Evaluation by expected outcome (repeated simulation)

1992 Gerald Tesauro TD-Gammon (reinforcement learning, self-play)

1992 Bernd Brugmann Monte Carlo Go (simulated annealing)

1999 U of Alberta Simulation in Poker

1999 Matt Ginsberg Simulation in Bridge

2002 Brian Sheppard Simulation in Scrabble

2006 Levente Kocsis and
Csaba Szepesvár

Multi-armed bandits for Monte-Carlo tree search

2016: AlphaGo defeats Lee Sedol (4-1)

Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem

Multi-Armed Bandit

. . . .

R1 R2 R3 R4 Rn

a1 a2 a3 a4 an

. . . . M1 M2 M3 M4 Mn

Multi-Armed Bandit
for Game Tree Search

. . . .

R1 R2 R3 R4 Rn

a1 a2 a3 a4 an

. . . . M1 M2 M3 M4 Mn

Multi-Armed Bandit
for Game Tree Search

a1 a2
a3

What move should I try?

Key ideas of Monte Carlo Tree Search:

1. View move selection as a multi-armed bandit problem

2. Evaluate moves by simulating games

Multi-Armed Bandit
for Game Tree Search

a1 a2
a3

What move should I try on each simulated game?

Monte-Carlo Tree Search (MCTS) Terms

• Leaf node: A state in the game tree that has successors for which no
games have been simulated

• Terminal node: End of game state

• Playout/rollout: Simulating a game from a leaf node to a terminal
node

Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached

Three Steps in MCTS

Three Steps in MCTS

Three Steps in MCTS

Three Steps in MCTS

Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached

• Expansion: Create a new successor state S’ for an untried action

Simulation: Play a game until you reach a terminal node

Three Steps in MCTS

Three Steps in MCTS

• Selection: Make move choices until a leaf node S is reached

• Expansion: Create a new successor state S’ for an untried action

Simulation: Play a game until you reach a terminal node

• Backpropagation: Update game statistics for the path from S’ up to
the root

Three Steps in MCTS

MCTS(state):

while TIME-REMAINING() do
leaf ← SELECT(tree)
child ← EXPAND(leaf)
result ← SIMULATE(child)
BACKPROPAGATE(result, child)

return argmax
a∈A

#playouts(apply(a,state))

Which move gives the game
state with most playouts

Three Steps in MCTS
How do we pick moves?

Remember This?
(UCB)

Algorithm:

For i ← 1 to n { Sumi ← R(armi); Ni ← 1 }; N ← n /* Initialization */

Loop Forever

best ← argmax
1≤i≤n

[
Sumi

Ni
+ c

ln N

Ni
]

pull arm abest and get reward r

Sumbest ← Sumbest + r; Nbest ← Nbest + 1; N ← N+1

Pull each arm once

Picking a Move During Selection and Expansion
(UCT – Upper Confidence bound applied to Trees)

Sumi = # of wins

Ni = # of times i was tried

N = # of simulations thus far (N(parent(i))

best ← argmax
1≤i≤n

[
Sumi

Ni
+ c

ln N

Ni
]

Lets you control how
much exploration

Three Steps in MCTS

How do we pick moves?

Picking a Move During Simulation

• Light playout: Pick uniformly at random

• Heavy playout: Make a biased selection
• Simulation statistics

• Game knowledge

Trade off: Slower run time vs missing a move

Benefits

• Doesn’t use an evaluation function!

• Time is linear in depth

• Handles large number of actions

• Let’s you make a move when a timer goes off (to manage time)

(“anytime algorithm”)

AlphaGo / AlphaZero

• Truncated playouts and used (learned) evaluation function

• UCB with additional term for (learned) probability of win

