Inductive Learning or Concept Learning

All learning can be seen as learning the representation of a function.

Inductive learning: system tries to induce a "general rule" from a set of observed instances.

Supervised learning: learning algorithm is given the correct value of the function for particular inputs, and changes its representation of the function to try to match the information provided by the feedback.

An **example** is a pair (x, f(x)), where x is the input and f(x) is the output of the function applied to x.

Slide CS472 – Machine Learning 4

Classification Tasks

Learning a discrete-valued function is called **classification**.

- Steering a vehicle: image in windshield \rightarrow direction to turn the wheel
- **Medical diagnosis:** patient symptoms \rightarrow has disease/ does not have disease
- For ensic hair comparison: image of two hairs \rightarrow match or not
- Stock market prediction: closing price of last few days \rightarrow market will go up or down tomorrow
- Noun phrase coreference: description of two noun phrases in a document \rightarrow do they refer to the same real world entity

]	Example:	Work	or Play?
outlook	temp	humidity	windy	Saturday plan
sunny	hot	high	false	cs472
sunny	hot	high	true	cs472
overcast	hot	high	false	soccer
rain	mild	high	false	soccer
rain	cool	normal	false	soccer
rain	cool	normal	true	cs472

- Each input observation, x, is a Saturday, described by the features outlook, temp, humidity, windy
- The target concept, $f: day \rightarrow {\text{soccer, cs472}}$

Slide CS472 – Machine Learning 5

Building Classifiers

- 1. Learn about the domain, write a program that maps inputs to outputs (eg., rule-based medical diagnosis systems).
- 2. Automate the process using data in the form of observations $(x_i, f(x_i))$. cholesterol=170,bp=170/95,... \rightarrow heart disease = N cholesterol=250,bp=170/95,... \rightarrow heart disease = Y

Inductive Learning

Given: collection of examples

Return: a function h (hypothesis) that approximates f (target concept).

OR

Given: a universe of objects described by a collection of attributes each labeled with one of a discrete number of classes

Return: a classification "rule" that can determine the class of any object from its attributes' values

Slide CS472 – Machine Learning 8

Inductive learning hypothesis: any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.

Assumptions for Inductive Learning Algorithms:

- The training sample represents the population
- The input features permit discrimination

Slide CS472 – Machine Learning 9

Inductive Learning

System tries to induce a general rule from a set of observed instances.

The *hypothesis* produced is sometimes called the *concept* description — essentially a program that can be used to classify subsequent instances.

k-nearest neighbor

Also called instance-based Learning; case-based learning. A: set of features/attributes, A_1, \ldots, A_n that describe the problem

 $x = x_{a_1} x_{a_2} \dots x_{a_n}$, where x_{a_i} is the value of feature A_i in example x

$$f(x): x \to c \epsilon C = \{c_1, \dots, c_m\}$$

The case base is the set of training examples $(x_1, f(x_1)), (x_2, f(x_2)), \ldots$

k-nearest neighbor algorithm for computing f(x):

1. Compare new example, x, to each case, y, in the case base and calculate for each pair:

$$sim(x,y) = \sum_{i=1}^{n} match(x_{a_i}, y_{a_i})$$

where match(a, b) is a function that returns 1 if a and b are equal and 0 otherwise.

- 2. Let R = the top k cases ranked according to sim
- 3. Return as f(x) the class, c, that wins the majority vote among $f(R_1), f(R_2), \ldots, f(R_{|k|})$. Handle ties randomly.

Slide CS472 – Machine Learning 12

Types of Attributes

- 1. Symbolic (nominal) $EyeColor \in \{brown, blue, green\}$
- 2. Boolean $anemic \in \{TRUE, FALSE\}$
- 3. Numeric (Integer, Real) $age \in [0, 105]$

How do we compute the similarity between EyeColor = brown and EyeColor = green?

	Example of case retrieval for k-nn			k-nn	
outlook	temp	humidity	windy	plan	sim
sunny	hot	high	false	cs472	
sunny	hot	high	true	cs472	
overcast	hot	high	false	soccer	
overcast	mild	normal	true	football	
rain	mild	high	false	soccer	
rain	cool	normal	false	soccer	
A: outloo	k, temp	, humidity	, windy		-
k = 1, C =	= {soco	er, cs472 f	ootball}		
test case:	X = st	unny cool ł	nigh fals	e	

k-Nearest Neighbor Algorithm

- 1. Memorizes all observed instances and their class
- 2. Is this rote learning?
- 3. Is this really learning?
- 4. When does the induction take place?

Advantages and Disadvantages

What constitutes the concept description?

Slide CS472 – Machine Learning 16

Top Down Induction of Decision Trees

If all instances from same class

then tree is leaf with that class name else

pick test for decision node partition instances by test outcome construct one branch for each possible outcome build subtrees recursively

Slide CS472 – Machine Learning 20

Example

CS Major Database

Height	Eyes	Class
short	brown	hacker
tall	blue	theoretician
tall	brown	hacker
short	blue	theoretician

Slide CS472 – Machine Learning 21

A Concept Learning Task

Day	Outlook	Temp	Humidity	Wind	Play-Tennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Characteristics of Tests
Let $ P = 20, N = 20$
A Boolean test splits the data into two subsets, U_1 and U_2
The best test: $U_1 = P$ and $U_2 = N$
The worst test: $U_1 = \frac{1}{2}P + \frac{1}{2}N$ and $U_2 = \frac{1}{2}P + \frac{1}{2}N$

Information Gain

average disorder =

$$\sum_{b=1}^{nbranches} \frac{n_b}{n_t} * Disorder(b)$$

average disorder =

$$\sum_{b=1}^{nbranches} \frac{n_b}{n_t} * \big(\sum_{c}^{nclasses} - \frac{n_{bc}}{n_b} \log_2(\frac{n_{bc}}{n_b})\big)$$

 n_b is the number of instances in branch b n_t is the total number of instances n_{bc} is the number of instances in branch b of class c

	Calculat	ion for A	Attril	bute	Humidity
	branch	value	n_{bp}	n_{bn}	disorder
	1	high	3	4	.99
	2	normal	6	1	.58
Disorder(h	igh) = -	$\frac{3}{7}log_2(\frac{3}{7})$ -	$-\frac{4}{7}log$	$g_2(\frac{4}{7})$:	= .99
Disorder(n	ormal)=	$-\frac{6}{7}log_2(\frac{6}{7})$	$) - \frac{1}{7}l$	$log_2(\frac{1}{7})$) = .58
Average D	isorder of	Humidit	y =		
$\frac{7}{14}Disc$	order(hig	$(h) + \frac{7}{14}D$	isord	er(no	rmal) =
$\frac{7}{14}(.99)$	$) + \frac{7}{14}(.58)$) = .79			

Slide CS472 – Machine Learning 26

Selection of Attribute			
Attribute	Average Disorder		
outlook	0.69		
temperature	0.91		
humidity	0.79		
windy	0.89		

Information Gain and Entropy

- S is a sample of training examples
- p is the proportion of positive examples in S
- n is the proportion of negative examples in S
- Entropy (our *Disorder*) measures the impurity of S

 $Entropy(S) \equiv -p \log_2 p - n \log_2 n$

Information Gain measures the expected reduction in entropy caused by partitioning the examples according to attribute A.

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Appropriate Problems for Decision Tree Learning
Instances represented by attribute-value pairs
Target function has a discrete number of output values
Disjunctive descriptions may be required

Decision Trees

Goal: Construct a decision tree that agrees (is consistent) with the training set.

Trivial solution: construct a decision tree that has one path to a leaf for every example.

Problem with trivial solution?

Non-trivial solution: find a concise decision tree that agrees with the training data.

