
Today: Probabilistic Parsing

Goal: Find the most likely parse.

1. Parsing with PCFGs

2. Problems

3. Probabilistic lexicalized CFGs

Slide CS474–1

CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form A → α, where A is a

non-terminal and α is a string of symbols from the infinite set of

strings (Σ ∪ N)

4. a designated start symbol S

Slide CS474–2

Probabilistic CFGs

Augments each rule in P with a conditional probability:

A → β [p]

where p is the probability that the non-terminal A will be expanded to

the sequence β. Often referred to as

P (A → β) or

P (A → β|A).

Slide CS474–3

Example

S NP VP 80 Det that 05 the 80 a 15
S Aux NP VP 15 Noun book 10
S VP 05 Noun flights 50
NP Det Nom 20 Noun meal 40
NP Proper-Noun 35 Verb book 30
NP Nom 05 Verb include 30
NP Pronoun 40 Verb want 40
Nom Noun 75 Aux can 40
Nom Noun Nom 20 Aux does 30
Nom Proper-Noun Nom 05 Aux do 30
VP Verb 55 Proper-Noun TWA 40
VP Verb NP 40 Proper-Noun Denver 40
VP Verb NP NP 05 Pronoun you 40 I 60

Slide CS474–4

Why are PCFGs useful?

• Assigns a probability to each parse tree T

• Useful in disambiguation

– Choose the most likely parse

– Computing the probability of a parse

If we make independence assumptions, P(T) =
∏

n∈T
p(r(n)).

• Useful in language modeling tasks

Slide CS474–5

Example

(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Rules P Rules P
S Aux NP VP .15 S Aux NP VP .15
NP Pro .40 NP Pro .40
VP V NP NP .05 VP V NP .40
NP Nom .05 NP Nom .05
NP PNoun .35 Nom PNoun Nom .05
Nom Noun .75 Nom Noun .75
Aux Can .40 Aux Can .40
NP Pro .40 NP Pro .40
Pro you .40 Pro you .40
Verb book .30 Verb book .30
PNoun TWA .40 Pnoun TWA .40
Noun flights .50 Noun flights .50

Slide CS474–6

Where does the grammar come from?

1. developed manually

2. from a treebank

Slide CS474–7

Where do the probabilities come from?

1. from a treebank:

P (α → β|α) = Count(α → β)/Count(α)

2. use EM (forward-backward algorithm, inside-outside algorithm)

Slide CS474–8

Parsing with PCFGs

Produce the most likely parse for a given sentence:

T̂ (S) = argmaxT∈τ(S)P (T)

where τ(S) is the set of possible parse trees for S.

• Augment the Earley algorithm to compute the probability of each

of its parses.

When adding an entry E of category C to the chart using rule i

with n subconstituents, E1, . . . , En:

P (E) = P (rule i | C) ∗ P (E1) ∗ . . . ∗ P (En)

• probabilistic CKY (Cocke-Kasami-Younger) algorithm

Slide CS474–9

Problems with PCFGs

Do not model structural dependencies.

Often the choice of how a non-terminal expands depends on the

location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken

sentence to be a pronoun.

• 91% of declarative sentences in the Switchboard corpus are

pronouns (vs. lexical).

• In contrast, 34% of direct objects in Switchboard are pronouns.

Slide CS474–10

Problems with PCFGs

Do not adequately model lexical dependencies.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:

NP → NP PP or VP → V NP PP?

Attachment choice depends (in part) on the verb: send subcategorizes

for a destination (e.g. expressed via a PP that begins with into or to or

...).

Slide CS474–11

Probabilistic lexicalized CFGs

• Each non-terminal is associated with its head.

• Each PCFG rule needs to be augmented to identify one rhs

constituent to be the head daughter.

• Headword for a node in the parse tree is set to the headword of its

head daughter.

Slide CS474–12

Example

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin

Slide CS474–13

Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

VP(dumped) → VBD(dumped) NP(sacks) PP(into) [3x10−10]

VP(dumped) → VBD(dumped) NP(cats) PP(into) [8x10−10]

VP(dumped) → VBD(dumped) NP(sacks) PP(above) [1x10−12]

...

Problem?

Slide CS474–14

Incorporating lexical dependency information

Incorporates lexical dependency information by:

1. relating the heads of phrases to the heads of their constituents;

2. including syntactic subcategorization information.

Syntactic subcategorization dependencies:

Probability of a rule r of syntactic category n:

p(r(n) | n, h(n)).

Example: probability of expanding VP as VP → VBD NP PP will be

p (r | VP, dumped).

Slide CS474–15

Incorporating lexical dependency information

Condition the probability of a node n having a head h on two factors:

1. the syntactic category of the node n

2. the head of the node’s mother h(m(n))

p(h(n) = word i | n, h(m(n)))

Slide CS474–16

