CS474 Natural Language Processing

Last class

- Intro to lexical semantics
- Today
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 - » Dictionary-based approaches
 - » Supervised machine learning methods
 - » Issues for WSD evaluation

Word sense disambiguation

- Given a *fixed* set of senses associated with a lexical item, determine which of them applies to a particular instance of the lexical item
- Two fundamental approaches
 - WSD occurs during semantic analysis as a side-effect of the elimination of ill-formed semantic representations
 - Stand-alone approach
 - » WSD is performed independent of, and prior to, compositional semantic analysis
 - » Makes minimal assumptions about what information will be available from other NLP processes
 - » Applicable in large-scale practical applications

Dictionary-based approaches

- Rely on machine readable dictionaries
- Initial implementation of this kind of approach is due to Michael Lesk (1986)
 - Given a word W to be disambiguated in context C
 - » Retrieve all of the sense definitions, S, for W from the MRD
 - » Compare each *s* in *S* to the dictionary definitions D of all the remaining words c in the context C
 - » Select the sense s with the most overlap with D (the definitions of the context words C)

Example

- Word: cone
- Context: pine cone
- Sense definitions
 - *pine* 1 kind of evergreen tree with needle-shaped leaves 2 waste away through sorrow or illness
 - cone 1 solid body which narrows to a point2 something of this shape whether solid or hollow3 fruit of certain evergreen trees
- Accuracy of 50-70% on short samples of text from *Pride and Prejudice* and an AP newswire article.

Machine learning approaches

- Machine learning methods
 - Supervised inductive learning
 - Bootstrapping
 - Unsupervised
- Emphasis is on acquiring the knowledge needed for the task from data, rather than from human analysts.

Collocational features

- Encode information about the lexical inhabitants of *specific* positions located to the left or right of the target word.
 - E.g. the word, its root form, its part-of-speech
 - An electric <u>guitar and **bass** player stand</u> off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

pre2-word pre2-pos pre1-word pre1-pos fol1-word fol2-pos guitar NN1 and CJC player NN1 stand VVB

Co-occurrence features

- Encodes information about neighboring words, ignoring exact positions.
 - Select a small number of frequently used content words for use as features
 - » 12 most frequent content words from a collection of bass sentences drawn from the WSJ: fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band
 - » Co-occurrence vector (window of size 10)
 - Attributes: the words themselves (or their roots)
 - Values: number of times the word occurs in a region surrounding the target word

fishing?	big?	sound?	player?	<u>fly</u> ?	rod?	pound?	<u>double</u> ?	guitar?	band?
0	0	0	1	0	0	0	0	1	0

