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Kalman Filter Applications

The Kalman filter (see Subject MI37) is a very powerful tool
when it comes to controlling noisy systems. The basic idea of a
Kalman filter is: Noisy data in⇒ hopefully less noisy data out.

The applications of a Kalman filter are numerous:

• Tracking objects (e.g., missiles, faces, heads, hands)

• Fitting Bezier patches to (noisy, moving, ...) point data

• Economics

• Navigation

• Many computer vision applications

– Stabilizing depth measurements

– Feature tracking

– Cluster tracking

– Fusing data from radar, laser scanner and
stereo-cameras for depth and velocity measurements

– Many more

This lecture will help you understand some direct applications
of the Kalman filter using numerical examples.

The examples that will be outlined are:

1. Simple 1D example, tracking the level in a tank (this pdf)

2. Integrating disparity using known ego-motion (in MI64)
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Predict-Update Equations

First, recall the time discrete Kalman filter equations (see MI37)
and the predict-update equations as below:

Predict:
x̂t|t−1 = Ftx̂t−1|t−1 + Btut

Pt|t−1 = FtPt−1|t−1FTt + Qt

Update:
x̂t|t = x̂t|t−1 + Kt

(
yt −Htx̂t|t−1

)
Kt = Pt|t−1HT

t

(
HtPt|t−1HT

t + Rt

)−1

Pt|t = (I−KtHt)Pt|t−1

where
x̂ : Estimated state.

F : State transition matrix (i.e., transition between states).

u : Control variables.

B : Control matrix (i.e., mapping control to state variables).

P : State variance matrix (i.e., error of estimation).

Q : Process variance matrix (i.e., error due to process).

y : Measurement variables.

H : Measurement matrix (i.e., mapping measurements onto state).

K : Kalman gain.

R : Measurement variance matrix (i.e., error from measurements).

Subscripts are as follows: t|t current time period, t− 1|t− 1
previous time period, and t|t− 1 are intermediate steps.
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Model Definition Process

The Kalman filter removes noise by assuming a pre-defined
model of a system. Therefore, the Kalman filter model must be
meaningful. It should be defined as follows:

1. Understand the situation: Look at the problem. Break it
down to the mathematical basics. If you don’t do this, you
may end up doing unneeded work.

2. Model the state process: Start with a basic model. It may
not work effectively at first, but this can be refined later.

3. Model the measurement process: Analyze how you are
going to measure the process. The measurement space may
not be in the same space as the state (e.g., using an electrical
diode to measure weight, an electrical reading does not
easily translate to a weight).

4. Model the noise: This needs to be done for both the state
and measurement process. The base Kalman filter assumes
Gaussian (white) noise, so make the variance and
covariance (error) meaningful (i.e., make sure that the error
you model is suitable for the situation).

5. Test the filter: Often overlooked, use synthetic data if
necessary (e.g., if the process is not safe to test on a live
environment). See if the filter is behaving as it should.

6. Refine filter: Try to change the noise parameters (filter), as
this is the easiest to change. If necessary go back further,
you may need to rethink the situation.
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Example: Water level in tank

1. Understanding the situation

We consider a simple situation showing a way to measure the
level of water in a tank. This is shown in the figurea.

We are trying to estimate the level of water in the tank, which is
unknown. The measurements obtained are from the level of the
“float”. This could be an electronic device, or a simple
mechanical device. The water could be:

• Filling, emptying or static (i.e., the average level of the tank
is increasing, decreasing or not changing).
• Sloshing or stagnant (i.e., the relative level of the float to the

average level of the tank is changing over time, or is static).

aTaken from http://www.cs.unc.edu/˜welch/kalman/kftool/

index.html
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First Option: A Static Model

2. Model the state process

We will outline several ways to model this simple situation,
showing the power of a good Kalman filter model.

The first is the most basic model, the tank is level (i.e., the true
level is constant L = c).

Using the equations from Page 2, the state variable can be
reduced to a scalar (i.e., x̂ = x where x is the estimate of L).

We are assuming a constant model, therefore xt+1 = xt, so
A = 0 and Ft = 1, for any t ≥ 0.

Control variables B and u are not used (i.e., both = 0).

3. Model the measurement process

In our model, we have the level of the float. This is represented
by y = y.

The value we are measuring could be a scaled measurement
(e.g., a 1 cm measurement on a mechanical dial could actually
be about 10 cm in the “true” level of the tank). Think of your
petrol gauge on your car, 1 cm can represent 10 L of petrol!

For simplicity, we will assume that the measurement is the exact
same scale as our state estimate x (i.e., H = 1).
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4. Model the noise

For this model, we are going to assume that there is noise from
the measurement (i.e., R = r).

The process is a scalar, therefore P = p. And as the process is
not well defined, we will adjust the noise (i.e., Q = q).

We will now demonstrate the effects of changing these noise
parameters.

5. Test the filter

You can now see that you can simplify the equations from Page
2. They simplify as follows:

Predict:

xt|t−1 = xt−1|t−1

pt|t−1 = pt−1|t−1 + qt

Update:

xt|t = xt|t−1 +Kt

(
yt − xt|t−1

)
Kt = pt|t−1

(
pt|t−1 + r

)−1

pt|t = (1−Kt) pt|t−1
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The filter is now completely defined. Let’s put some numbers
into this model. For the first test, we assume the true level of the
tank is L = 1.

We initialize the state with an arbitrary number, with an
extremely high variance as it is completely unknown: x0 = 0
and p0 = 1000. If you initialize with a more meaningful
variable, you will get faster convergence. The system noise we
will choose will be q = 0.0001, as we think we have an accurate
model. Let’s start this process.

Predict:

x1|0 = 0

p1|0 = 1000 + 0.0001

The hypothetical measurement we get is y1 = 0.9 (due to noise).
We assume a measurement noise of r = 0.1.

Update:

K1 = 1000.0001(1000.0001 + 0.1)−1 = 0.9999

x1|1 = 0 + 0.9999 (0.9− 0) = 0.8999

p1|1 = (1− 0.9999) 1000.0001 = 0.1000

So you can see that Step 1, the initialization of 0, has been
brought close to the true value of the system. Also, the variance
(error) has been brought down to a reasonable value.
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Let’s do one more step:

Predict:

x2|1 = 0.8999

p2|1 = 0.1000 + 0.0001 = 0.1001

The hypothetical measurement we get this time is y2 = 0.8 (due
to noise).

Update:

K2 = 0.1001 (0.1001 + 0.1)−1 = 0.5002

x2|2 = 0.8999 + 0.5002 (0.8− 0.8999) = 0.8499

p2|2 = (1− 0.5002) 0.1001 = 0.0500

You can notice that the variance is reducing each time. If we
continue (with hypothetical yt-values) this we get the following
results:

Predict Update

t xt|t−1 pt|t−1 yt Kt xt|t pt|t

3 0.8499 0.0501 1.1 0.3339 0.9334 0.0334

4 0.9334 0.0335 1 0.2509 0.9501 0.0251

5 0.9501 0.0252 0.95 0.2012 0.9501 0.0201

6 0.9501 0.0202 1.05 0.1682 0.9669 0.0168

7 0.9669 0.0169 1.2 0.1447 1.0006 0.0145

8 1.0006 0.0146 0.9 0.1272 0.9878 0.0127

9 0.9878 0.0128 0.85 0.1136 0.9722 0.0114

10 0.9722 0.0115 1.15 0.1028 0.9905 0.0103
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Another reading sequence; try this:

Predict Update

t xt|t−1 pt|t−1 yt Kt xt|t pt|t

3 1.05

4 0.95

5 1.2

6 1.1

7 0.23

8 0.85

9 1.25

10 0.76
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You can see (Page 8) that the model successfully works. After
stabilization (about t = 4) the estimated state is within 0.05 of
the “true” value, even though the measurements are between
0.8 and 1.2 (i.e., within 0.2 of the true value).

Over time we will get the following graph:
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So what have we established so far?

If we create a model based on the true situation, our estimated
state will be close to the true value, even when the
measurements are very noisy (i.e., a 20% error, only produced a
5% inaccuracy).

This is the main purpose of the Kalman filter.

But what happens if the true situation is different?

We will keep the same model (i.e., a static model). This time, the
true situation is that the tank is filling at a constant rate:

Lt = Lt−1 + f

Let’s assume that the tank is filling at a rate of f = 0.1 per time
frame, and we start with an initialization of L0 = 0. We will
assume that the measurement and process noise remain the
same (i.e., q = 0.001 and r = 0.1).

Let’s see what happens here:

Predict Measurement and Update Truth

t xt|t−1 pt|t−1 yt Kt xt|t pt|t L

0 − − − − 0 1000 0

1 0.0000 1000.0001 0.11 0.9999 0.1175 0.1000 0.1

2 0.1175 0.1001 0.29 0.5002 0.2048 0.0500 0.2

3 0.2048 0.0501 0.32 0.3339 0.2452 0.0334 0.3

4 0.2452 0.0335 0.50 0.2509 0.3096 0.0251 0.4

5 0.3096 0.0252 0.58 0.2012 0.3642 0.0201 0.5

6 0.3642 0.0202 0.54 0.1682 0.3945 0.0168 0.6
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We can now see that over time the estimated state stabilizes (i.e.,
the variance gets very low). We can easily see this on the
following graph:

Can you see the problem?

The estimated state is trailing behind the true level. This of
course is not desired, as a filter is supposed to remove noise, not
give an inaccurate reading. In this case the estimated state has a
much greater error (compared to the truth) than the noise from
the measurement process.
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What is causing this? There are two contributions:

• The model we have chosen.

• The reliability of our process model (i.e., our chosen q
value).

The easiest thing to change is our q value. What was the reason
we chose q = 0.0001? It was because we thought our model was
a good estimation of the true process. However, in this case our
model was not a good estimator.

So why not relax this? Let’s assume there is a greater error with
our process model, and set q = 0.01:
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So the benefits of increasing the error were beneficial. However
the estimated state still has more error than the actual noise.

Let’s increase this value again! Let q = 0.1:

This is getting close to the true value, and has less error than the
measurement noise.
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Let’s try q = 1 to see what happens:

Now there is almost no difference to the measured value. There
is minor noise removal, but not much. There’s almost no point
in having the filter.

So what has been learnt here?

If you have a badly defined model, you will not get a good
estimate. But you can relax your model by increasing your
estimated error. This will let the Kalman filter rely more on the
measurement values, but still allow some noise removal.

In your own time, try playing with the measurement error r and
see what the effect is.
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Second Option: A Filling Model

2. Model the state process

To get better results, we need to change our Kalman model.

Let’s redefine it then.

So, the actual model is: Lt = Lt−1 + f

This translates to a continuous process transition of:

x = (xl, xf )>

A =

 0 1

0 0


where xl is the level L, and xf = dxl

dt is the estimated filling rate,
and A represents the tank continuously filling at rate xf
(defined by f and the used time scale).

However, we want a discrete process. So A needs to be made
time-discrete. Just apply the infinite sum as given in MI37 (note
that Ai is zero in all four components, for all i > 1):

Ft =

 1 ∆t

0 1


for all t ≥ 0. We will be ignoring B and u again.
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3. Model the measurement process

In this case, we can not measure the filling rate directly, but we
will still assume a noisy measurement of L. Therefore we have:

H = (1 , 0)

y = (y , 0)>

Indicating that there is no measurement for filling rate and that
y is the estimated measurement of xl.

4. Model the noise

The measurement process has not changed, so that means that
the noise has not changed (i.e., R = r).

The process has changed, so we need to redefine the noise.

Now if we assume the noise is only in the filling part of the
process, this would give us the continuous noise model with

Q =

 0 0

0 qf


where qf is the filling noise.

Now, this continuous process can be approximated by a
time-discrete process using:

Q(∆t) =
∫ ∆t

0

eAτQeA
>τdτ
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Using this continuous to discrete translation, we can take the
continuous A and Q to approximate the discrete Q. This gives us
(after some calculations - to be skipped here; again, apply the
infinite sum for the power of e):

Q =

 ∆t3qf

3
∆t2qf

2
∆t2qf

2 ∆tqf


For simplicity, we assume a continuous sampling rate of ∆t = 1.

Therefore,

Ft =

 1 1

0 1


Q =

 qf/3 qf/2

qf/2 qf


Also, the process is no longer scalar, so the covariance matrix is

P =

 pl plf

plf pf


where the subscript denotes the relating variance and plf is the
covariance (which is symmetric, i.e., plf = pfl).
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5. Test the filter

The equations from Page 2 could be slightly simplified, but for
our purposes, it is best just to put in the information from above
into the equations. (K can be simplified quite nicely.)

Predict:

x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1FTt + Qt

Update:

x̂t|t = x̂t|t−1 + Kt

(
yt −Htx̂t|t−1

)
Kt = Pt|t−1HT

t

(
HtPt|t−1HT

t + Rt

)−1

Pt|t = (I−KtHt)Pt|t−1

This time we have an accurate model of a constant fill rate. We
will assume that we have a noise of r = 0.1, and an accurate
process noise of qf = 0.00001.

We have no idea of the initial state or filling rate, so we will
make x0 = (0 , 0)> with an initial variance of:

P0|0 =

 1000 0

0 1000


We are assuming we have no idea of either values, and we are
assuming that there is little or no correlation between the
values.
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We will need to test these results under different conditions.
The first test will be that the model is filling at a constant rate of
0.1 per time frame, with an actual measurement noise of ±0.3.

If we plot this on a graph it looks as follows:

Notice that the filter quickly adapts to the true value. Note that
we did not tell the Kalman filter anything about the actual
filling rate, and it figured it out all by itself. Even with a bad
unsure initialization.

Actually, if you give a Kalman filter a bad initialization, it takes
the first measurement as a “good” initialization.

Page 20 September 2008



.

. Subject MI63: Kalman Filter Tank Filling

Let’s see what happens if you try to trick the Kalman filter by
using a constant level (i.e., there is no actual filling):

The filter stabilizes in the exact same time frame as before. This
is because the model stabilizes with a fill rate of 0.
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Third Option: Constant, but Sloshing

Now let us test an extreme case. We will assume that the water
is at a constant level, but it is sloshing in the tank. This sloshing
can be modeled as a sine wave

L = c sin(2π r ∆t) + l

where c is an amplitude scaling factor, r is the cycle rate, and l is
the average level (as sin integrates to zero over time).

If we use c = 0.5, r = 0.05, and l = 1 we get the following result:
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There are two things you should notice about the Kalman filter:

1. The model is smoother than the noisy measurement, but
there is a lag behind the actual value. This is common when
filtering a system that is not modelled correctly.

2. The amplitude of the filter is getting smaller and smaller.
This is because the model is slowly converging to what it
thinks is the truth... a constant level, which is accurate over
time.

If you wanted to model the sloshing properly, you would need
to use an extended Kalman Filter, which also takes into
consideration the non-linearity of the system.

See

www.cs.unc.edu/˜welch/kalman/media/pdf/kftool_

models.pdf

for details.
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Summary of the Three Tank Examples

The main points that you should learn from these examples are:

1. The model for your filter will try to fit the given
measurement data to the model you have provided. This
may be undesirable. In the sloshing case, it may be
desirable to filter out the sloshing as “noise”, so you can get
the average level of the tank. If you wanted to measure the
sloshing, then you need to model it.

2. The initialization and noise components of your filter do
effect the results of how the filter operates.

3. You need to think about the outcome of your filter; if you
can approximate that the time steps are small enough, then
a simple linear model will work, but you will get lag.
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Coursework

63.1. Download the KalmanExample.xls spreadsheet from the
course’s website.

Here there are two tabs, one for Options 1 and 2 (constant or
with filling), and one for Option 3 (constant and sloshing). A
tab says the name of the model, followed by the name of the
actual situation.

For each model, try changing the different noise parameters r
and q to see the effect. Keep q static and change r, then vice
versa.

Try changing the initialization values x0|0 and p0|0 to see the
effect on the overall outcome.

63.2. Go to the UNC (University of North Carolina) website
with a dedicated Kalman filter learning tool:

www.cs.unc.edu/˜welch/kalman/kftool/index.html

Read the document describing the filter:

www.cs.unc.edu/˜welch/kalman/media/pdf/kftool_

models.pdf

Then play with the online Java tool. Once you have an
understanding you can download the Matlab or Java code to
see how it operates.
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