Lecture 20:
CS 5306 / INFO 5306:
Crowdsourcing and Human Computation
Today at 4:15pm in Gates G01

Title: Predicting Human Visual Memory using Deep Learning
Speaker: Aditya Khosla, MIT

Used deep learning to identify what makes images memorable
(Gathered data via a game for Mturk workers)
Project Status Reports: Due Thursday

Email to your TA “mentor”
Should represent an update to your proposal:
Are you on track?
If the timetable is off, update it.
Any surprises?
What did you change?
Types of Crowdsourcing

• Overt
 • Collecting (Amazon Reviews)
 • Labor Markets (Amazon Mechanical Turk)
 • Collaborative Decisions (Prediction Markets)
 • Collaborative Creation (Wikipedia)
 • Smartest in the Crowd (Contests)
 • Games with a Purpose

• Covert / Crowd Mining
 • Web page linkage, search logs, social media, collaborative filtering

• Dark side of crowdsourcing and human intelligence

• Collective intelligence in animals
Types of Crowdsourcing

• Overt
 • Collecting (Amazon Reviews)
 • Labor Markets (Amazon Mechanical Turk)
 • Collaborative Decisions (Prediction Markets)
 • Collaborative Creation (Wikipedia)
 • Smartest in the Crowd (Contests)
 • Games with a Purpose

• Covert / Crowd Mining
 • Web page linkage, search logs, social media, collaborative filtering

• Dark side of crowdsourcing and human intelligence
• Collective intelligence in animals
Mining Discussion Groups

- Yahoo! Finance message boards
- Increased message postings -> next day increased volume and abnormal stock returns
- Overnight doubling of posts -> 0.18% average abnormal return

• Ragingbull.com message boards
• No connection

- 1.5M Yahoo! Finance and Raging Bull message boards
- Increased messages -> negative return next day
- Increased disagreement -> increased trading volume
- Increased message -> increased volatility

- 24 tech-sector stocks
- 2 months of message board discussions (2001) (145,000 messages)
- Assessed sentiment of each
- Predicted aggregate movement but not individual movement
Mining Blogs

- Studied mentions of books in 300,000 blogs
- Compared to 500,000 Amazon sales rank values for 2,340 books over a period of four months
- Can blog volume be used to predict sales rank?
 - Success for hand-generated queries
 - Some success for automated queries
• 49 movies
• Blog entries mentioning full movie name or link to IMDB entry
• Took k words around these
• Pre-release blog volume can be used to predict income per screen
• Sentiment of posts (positive, negative, neutral) improved predictions
 • Volume of positive posts
 • Sentiment alone not enough
“Capturing global mood levels using blog posts”

G. Mishne and M. De Rijke

AAAI 2006 Spring symposium on computational approaches to analysing weblogs

- All public blog posts published in LiveJournal during a period of 39 days, from mid-June to early-July 2005
- 8.1M posts, 3.5M with mood (from list of 132 moods, else free text)
- Two stages:
 - Identify text features for estimating mood prevalence
 - Learning model to predict the intensity of moods
- Case studies:
 - “Drunk” and “Excited”
 - Sentiment after London terror bombings – unsuccessful
“ARSA: A sentiment-aware model for predicting sales performance using blogs”

Y. Liu, X. Huang, A. An, and X. Yu

Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007

- Studied mentions of movies in blogs
- 45046 blog entries that comment on 30 different movies
- Performed sentiment analysis on blog entries

- Estimate anxiety, worry and fear from a dataset of over 20 million posts made on the site LiveJournal
- Increases in expressions of anxiety, evidenced by computationally-identified linguistic features, predict downward pressure on the S&P 500 index
Mining Tweets
S. Asur and B. A. Huberman, “Predicting the future with social media”, *Proceedings of the ACM Conference on Web Intelligence*, 2010

- Movie tweet rate can be used to predict box office revenues before movie opens
- Sentiment of tweets can improve this after movie release
 - Applied machine learning to label tweets as positive, negative, or neutral
 - Training data labeled using Amazon Mechanical Turk
- Better than prediction market (Hollywood Stock Exchange)
S. Asur and B. A. Huberman, “Predicting the future with social media”, Proceedings of the ACM Conference on Web Intelligence, 2010

• Consumer confidence: “economy”, “job”, and “jobs”
• Presidential approval: “obama”
• Elections: “obama” and “mccain”
• Frequency of 2800 positive/negative words
Culotta, A. Towards detecting influenza epidemics by analyzing twitter messages. In *Proceedings of the First Workshop on Social Media Analytics*, ACM, 115–122, 2010

- 500,000 tweets over 10 weeks
- Learned classifier to filter tweets
- 0.78 correlation with CDC data

- 4M tweets over 50 weeks

- 2B tweets
- 1.5M relevant tweets
- Used to:
 - Track illnesses over times (syndromic surveillance)
 - Measuring behavioral risk factors
 - Localizing illnesses by geographic region
 - Analyzing symptoms and medication usage

• Uses two different methods for assessing the mood of tweets about stocks
• Some have effect in changes in DJIA closing values
P.S. Dodds, K.D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth, “Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter”, PLoS 1, December 2011

- Used Twitter: 4.6 billion tweets, 46 billion words, 63 million users, 33 months
- Tracked “happiness” of over 100,000 words (assessed via Amazon Mechanical Turk) by location, day, time of year, etc.
P.S. Dodds, K.D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth, “Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter”, *PLoS 1*, December 2011
P.S. Dodds, K.D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth, “Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter”, *PLoS 1*, December 2011
P.S. Dodds, K.D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth, “Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter”, *PLoS 1*, December 2011
Further Applications in Medicine

• Signorini, A., Segre, A. M., and Polgreen, P. M. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza a H1N1 pandemic. PLoS ONE 6, 5 (May 2011), e19467.

Further Applications

Further Applications in Medicine
Social Media Mining Template

• What data to use
 – Examples:
 • Tweets mentioning name of movie
 • Blog posts with mood annotation

• What aspects of data to measure
 – Examples:
 • Volume of tweets, posts
 • Sentiment of tweets, posts
 – Use machine learning