Performance Analysis of Intel DPDK on Physical and Virtual Machines

Vidhya Sankaran – vs444
Divyesh Darde – dsd96
Agenda

- Scope of Project
- Overview of Intel DPDK
- Setup and Configuration
- Demo on Physical and Virtual Machine
- Performance Measurements
- Analysis and improvements suggested
Team and Advisor Details

- **Professor** - Prof. Hakim Weatherspoon
- **Advisor** - Han Wang
- **Project Team**
 - Vidhya Sankaran –vs444
 - Divyesh Darde- dsd96
Scope

• Understanding the working of Intel DPDK
• Performance measurement of Intel DPDK with physical machines with and without Intel DPDK driver.
• Performance measurement of Intel DPDK with virtual machines
• Comparison and analysis of performance.
Intel DPDK Overview

- Is a complete framework for fast packet processing in data plane applications.
- Directly polls the data from the NIC.
- Does not use Interrupts - to prevent performance overheads.
- Another feature - Uses the huge pages to pre-allocate large regions of memory which allows the applications to DMA data directly into these pages.
- DPDK also has its own buffer and ring management systems for handling sk_buffs efficiently.
Core Components of DPDK
Core Components

- A queue manager implements lockless queues
- A buffer manager pre-allocates fixed size buffers
- A memory manager allocates pools of objects in memory and uses a ring to store free objects
- Poll modes drivers (PMD) avoid interrupt driven input, avoiding context switching
Setup and demo on Phy Machine

L3 Forwarder: We used L3 Fwder. The forwarding function uses a hash map for the flow classification. Hashing is used in combination with a flow table to map each input packet to its flow at runtime. The hash lookup key is represented by a 5-tuple- Source IP, Dest IP, Source Port, Dest Port and Protocol. The ID of the output interface for the input packet is read from the identified flow table entry. For the demo, the set of flows used by the application is statically configured and loaded into the hash at initialization time.
Demo
Setup and Demo on VM Machine
Performance Comparison (With Intel DPDK using PKTGEN and L3 fwdsr in PHY and VM)

Comparison of Intel DPDK Performance on Physical Machine and VMs

Throughput (Mpps)

Packet Size (Bytes)

Throughput (Mpps) - PHY

Throughput (Mpps) - VM
Why this performance gain?

- Put/get data directly to/from dma area to avoid data copies.
- Work in poll mode. The hardware do not need to generate interrupt for packet reception. Interrupt also causes context switch.
- Uses huge pages to hold the packet data to avoid the minor page faults.
Problem with VMs and Improvements suggested

- Inter VM communication will still require additional copy of data between the VMs.
- Overheads caused by inter-core communication and context switching.

Improvements suggested-
- Can use a shared memory framework that provides zero copy delivery to VMs and between VMs. [NetVM paper uses this]
- Support for high-speed inter-VM communication through shared huge pages
Questions