Advanced Progamming Languages Lecture 17
CS 6110 Spring 2015 Mon. March 2, 2015

Lecture 17

Topics
1. Church Rosser Theorem.

2. Typed A-calculus — We've already seen this in the study of evaluators, we’ll show
something very neat about types and typed A in next lecture.

3. Review evaluators.
e Substitution — Lecture 2 definition, Lecture 4 evaluation function

e Environments
Dynamic scoping
Static scoping and closures (closure convention)

e CPS style.

e Suggest a good exam question and bring it to me in class on Wednesday.
4. Reflect on types, compare CPS style to Kleene Normal Form.
5. Other key topics for the midterm exam:

Barendregt variable convention
Equational A\ calculus theory
Howe’s equality — what it means, not the proofs
Structural induction on A-terms
Subrecursive languages — primitive recursion, CoqPL
Kleene normal form, universal machines

p-operator

Partial recursive vs. total recursive

Kleene equality ¢ ~ ¢/

1. Church-Rosser Theorem (Thompson p.37)
/E-
g

f
W4
h

If e reduces to f and e reduces to g using a sequence of S-reductions, then we can find
a term h such that f — h and g — h.

This is not so key when a programming language dictates one strategy, e.g. lazy, or
when additional notations indicate the method of reduction, e.g ap(f;a) vs. cbv(f;a).

2. Typed A-Calculus (Thompson section 2.6, p.42)
Base types, e.g. N.
Function types a — 3. (Thompson writes a = [3)
The type of functions that accept inputs of type a and produce outputs of type S.

Two styles:
Curry— types not required on the terms (Nuprl), e.g. A(z.2) € @ — a.
Church - types attached to terms (Coq), e.g. AM(z° A(y*.z)) € B — (o — B).

Theorem In the typed \-calculus, every reduction sequence terminates.

We will discuss constructive vs. non-constructive proofs of this theorem. The result
holds even if the types are partial types.

3. Review evaluators and typing
0. Basic Types

Term is our recursive definition of A-terms
Term = Var

| A(v.t) wveVar, te Term
lap(fia) f, a€ Term

The values are closed abstractions, A(v.t), i.e. no free variables in ¢.

1. Substitution Evaluatol] evaly : Term — Term
(lazy, call-by-name)

evaly(x) =

evalp(A(z.b)) = A(z.b)

evalp(ap(f;a)) = let A(w.b) = evaly(f)
in evaly(bla/x))

Note: f, b, a are syntax

In the typed A-calculus of Thompson 2.6, the functions do not include recursive
definitions, just the simply typed \-calculus. A key result we will prove is that all
reduction sequences terminate.

'The actual type is Term — Term, where Term is either a diverging term or a regular value.

2. Evaluation with environments evaly : (Term x (Var — Term™)) — Term™
(a) Simple Environments - dynamic scope

Let Term™ be Term U {error}, then environments are Var — Term™.

evaly(z, e) = e(z) returns term or error
evalg(A(z.b),e) = A(z.b)
evald(%(f; a),e) = let A(x.b) = evaly(f,e)

in evaly(b, elx — evaly(a,e)])

(b) Environments with closures — static scope Env = Var — (Term x Env)
(recursive type definition)

eval.(z, e) = let <t e >=e(x)
in eval.(t,e’)
eval.(A(x.b), e) = < Axb),e>
eval.(ap(f;a),e) = let < A(z.b),¢' > = eval.(f,e)
o in eval.(b,e'|lx =< a,e >])

eval. : (Term x Env) — (Value x Env)

3. Continuation Passing Evaluator (CP Style - CPS)

evale,(z, e, k) = let <t, ¢ >=e(x)
in eval(t, €, k)

evalgy(A(z.b),e,k) = k(< Ax.b),e>)

evale,(ap(f;a), e, k) = evalgy(f,e k)

Where &' = A(p.eval,(p.1,p.2[x —< a,e >|,k)), for p the pair of a function p.1,
and an environment, p.2.

We use the notation p.1 and p.2 to pick out the first and second elements of the
pair of a function with its environment. So if p has the value < A(x.t),e > then
p.1 = A(z.t) and p.2 = e.

