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Lecture 38

Topics

1. PS5 None of the problems are difficult. We discussed problem 1 in Lecture 37 (assuming
most students had read it). It seems unnecessary to discuss Turing machines in lecture
beyond a few remarks. We did discuss Russell’s paradox briefly, and it’s in Wikipedia.

2. The propositions-as-types idea will be with us in all the rest of the lectures and on the
final exam. It is in problem 5 and to some extent problem 1 and 2 as well. You could
make it a feature of problem 2, say by proving that if a TM (Turing Machine) decides
membership in a language Σ∗ then there is a CTT function that decides. To impress
us, you might want to show that accepting a language over Σ∗ can be defined using
partial types.

3. An issue that we face in this course – formal solutions and presentations from Software
Foundations in Coq vs informal accounts in lecture. I don’t believe in lecturing formally
in a graduate course. You can get that from the books and Coq. You need to see
options, alternatives, new approaches, and open issues and problems, in addition to
formal material. This will become a social issue when we are cooperating more with
machines.

Type theory required for PS5

We are not presenting the entire type theory of Nuprl, CTT. We are covering enough of the
basic ideas so that you can use them in Problem Set 5. We are not requiring that you do
any completely formal proofs, so we are not presenting all the rules, and none of them in
detail. If you choose to do Problem 5 in Coq, Abhishek has sent information on Piazza, and
we want you to explain the Coq extract and its relationship to the formal proof.

You will need a rule for induction on lists. The Nuprl rule is a form of “primitive recursion
on lists”. The form of an A list in CTT is given inductively. We say that nil is a list, and if
t is a list, then for h ∈ A, h.t is a list, with head h and tail t.

The rule for list induction is based on this computation rule.

list ind(nil; base;u, v, w.body(u, v, w)) ↓ base

list ind(h.t; base;u, v, w.body(u, v, w)) ↓ body(h, t, list ind(t; base;u, v, w.body))

This is a form of primitive recursion on lists. Thompson explains this well, and you can use
his notation if you choose, or Coq notation.
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For induction on Z, the form is close to induction on N but there is a downward case as well.
You will not need that rule for PS5. You can read the rule in the list of Nuprl rules written
by Kreitz – posted with lecture 35.

Main topic of the next two lectures:

Math/Logic ←→ Computer Science
Correspondence

via
propositions-as-types

Here is what we’ve covered so far:

Propositions Types

1. A⇒ B A→ B
(implication) (function type)

2. ∀x : D.B(x) x : D → B(x)
(universal quantification) (dependent function type)

3. A&B A×B
(conjunction) (Cartesian product)

4. ∃x : D.B(x) x : A×B(x)
(existential quantifier) (dependent Cartesian product)

5. A ∨B A+B
(disjunction) (disjoint union){

x1 :A1 | x2 :A2 | ... |xn :An

(variants)

}
6. False V oid

7. ∼ A A→ V oid
(negation)
(A⇒ False)

8. a = b in A a = b in A
(equality) (equality)
axiom ∈ (a = a in A) (a = a in A) is true

This correspondence between propositions and types is very deep and useful and evolving as
new types are created for programming and new computational primitives are created with
the type. We can use it both ways, seeing that a program or asserted program gives us the
idea for a proof of a proposition. Conversely, a proof in a constructive logic can give us a
provably correct program. Types give us rich ways to specify a programming task.

The correspondence has explanatory power. We can explain “classical logic” in terms of
computational evidence rather than the less clear and tractable idea of truth.

The correspondence provides clear computational menaing to ideas such as “modular arith-
metic” and other algebraic ideas. There are some types we will not have time to study deeply,
such as intersection, A ∩ B, and dependent intersection, x : A ∩ B(x), that introduce new
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logical ideas, such as uniformity and polymorphic truth. This type also leads to a definition
of dependent records and objects, e.g {x1 :A1; x2 :A2(x1); x3 :A3(x1, x2), ...}.

This is a way to define algebraic structures such as groups, rings, fields, etc.

{D :Type; op :D ×D → D; assoc :∀x, y, z :D.op(x, op(y, z)) = op(op(x, y), z) in D}

Programming and proving

We will explore the tight connection between programming and proving that is revealed
through the propositions-as-types principle, supported in CTT, implemented om Agda, Coq,
and Nuprl. At Cornell we were the first to make this real, implementing the λ-PRL system
in 1980 and Nuprl in 1984. Also the 1978 PLCV programming logic integrated proofs and
programs together in one system, based on constructive logic.

Consider the problem of finding the integer square root of a natural number. How could we
do this? What is a good specification? Here are two options:

A. Take the real number square root and truncate to a natural number, e.g.
√

2 = 1.4142135623730950488016887242096980785696718753769480

So root(2)=1. This would be hard, and might not work! Why not?

B. Define it intuitively. Consider what we mean.

First we could draw the graph:
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What is the key property?

Given x, we want the unique y such that y2 ≤ x < (y + 1)2.

In logic ∀x :N.∃y :N.y2 ≤ x < (y + 1)2.

As a type, x :N→ y :N× (y2 ≤ x < (y + 1)2).
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C. Imperative solution.

y := 0; {y2 ≤ x} while (y + 1)2 ≤ x do

{(y + 1)2 ≤ x}

y := y + 1

{y2 ≤ x}

od

{x < (y + 1)2} loop exit condition

{y2 ≤ x} the loop invariant

Here is another proposition that can be read as a programming task. These are two
formulations of the same task, one using the quotient type. Think about how to write
the program for the first version.

1. ∀x :Z.∃y :Z.(x = z ∗ y ∨ x = z ∗ y + 1 ∨ x = z ∗ y + 2) or equivalently

2. ∀x :Z//mod(3).b.(x =z 0 ∨ x =z 1 ∨ x =z 2)
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