
Advanced Progamming Languages Lecture 4
CS 6110 Spring 2015 Wed. Jan. 28, 2015

Lecture 4

Topics

1. Brief review of capture - OCaml example

2. Barendregt’s equational theory ∧α, Chapter 2, 2.1.4, λ
(He mentions names: λ-calculus, λβ-calculus, λk-calculus

3. An evaluator for λ-terms - denotational, relationship to set theory

4. Combinators

1. Review of capture and substitution

Our key example can be written in OCaml over the integers as:

ap(λ(y.ap(λ(x.λ(y.b(x, y))); a(y))); c)

which reduces to:
λ(y.b(a(c), y))

We can write this numerically in OCaml and you can execute the program.

ap(λ(y.ap(λ(x.λ(y.x+ y)); y ∗ z)); 2)

(fun y → (funx→ fun y → (x+ y))(y ∗ 3)) 2

(int→ int)

apply to 2 then 3 get 9

(funx→ fun y → (x+ y)) 6

fun y → (6 + y) 3

6 + 3

9

Lecture 2 from CS6110 2012 gives the details of safe substitution. PS1 deals with this
topic as well and asks you to write out safe substitution for your account of λ-terms.

1



2. Lambda Theory

Barendregt presents a small formal equational theory of λ-terms based on his syntax.
Here are his axioms (page 23, Chapter 2) in a different order. We take M,N,L, Z, to
be λ-terms.

Eq 1. Reflexivity: M = N

Eq 2. Symmetry: (M = N)⇒ (N = M)

Eq 3. Transivity: M = N, N = L⇒M = L

Eq Ap. M = N ⇒MZ = NZ equals applied to equals

Ap Eq. M = N ⇒ ZM = ZN application to equals

M = N ⇒ λx.M = λx.N

β (λx.M)N = M [N/x] β-conversion (lazy application)

α M ≡α N iff N results from M by a sequence of changes of bound variable. We
also write M =α N . This is called alpha equality.

This Lambda Theory treats a weak notion of computational equality, a step by step
treatment of computation without regard to whether the computation terminates.

There is an even more syntactic theory that omits the β rule. That is a theory of
structural equality.

An evaluation function for λ-terms

Lisp, built by McCarthy at MIT, was the first programming language to implement the
λ-calculus, defined at Princeton by Church. One of McCarthy’s key steps was writing
an evaluator for the language. The ML language adopted this notion. OCaml has
an evaluator. The problem for us is that it executes a typed λ-calculus, so we can’t
experiment with all expressions such as λ(x.xx)λ(x.xx), more fully

ap(λ(x.ap(x;x));λ(x.ap(x;x)))

Here is a lazy evaluator based on the β-reduction rule:

ap(λ(x.b); a) ↓ b[a/x] Barendregt writes using
λ(x.b)a = b[a/x] the variable convention.

This evaluation rule is given the name lazy evaluation or call-by-name evaluation. It
is lazy because we don’t bother evaluating the argument a before we substitute it “by
name” for x.

Here is the lazy evaluator written recursively:

eval(ap(λ(x.b); a)) = eval(b[a/x])

2



The evaluator must deal with any closed λ-expression.

eval(l) = if l = λ(x.b) then l

if l = ap(f ; a)

then if eval(f) = λ(x.b)

then eval(b[a/x])

else abort

This is a recursive function. Can we write it as a λ-term?

3


