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On the Size of Machines* 
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MIT, Department of Mathematics and Research Laboratory of Electronics, 
Cambridge, Massachusetts 

In this paper, the methods of recursive function theory are used to 
study the size (or cost or complexity) of machines. A positive result of 
this study shews that to a remarkable degree, the relative size of two 
machines is independent of the particular way in which machine size 
is measured. Another result suggests that in order for programs to be 
of economical size, the programming language must be powerful 
enough to compute arbitrary general recursive functions, rather than 
some restricted subset such as the primitive recursive functions. 
Finally, a kind of speedup theorem is proved which is curiously inde- 
pendent of whether the measure of complexity be the size or the num- 
ber of steps taken by the machines that compute the functions. 

INTRODUCTION 

B y  machines  we mean  Tur ing  machines,  idealized compute r  programs,  
or any  idealized devices for comput ing  the reeursive functions.  The  
machines and their  size mus t  satisfy the axioms of section 1. Section 3 
introduces  a general set of axioms for step-eounting.  These determine 
wha t  is acceptable as a definition of " a  s tep" in a computa t ion .  These 
axioms are all so fantast ical ly weak t h a t  any  reasonable model  of a 
compute r  and  any  reasonable definition of size and  step satisfies them. 

All our  examples refer to a specific class of machines and a specific 
not ion of size and  step: The  class of machines  is Dav i s '  (1958) 1-tape, 
2-symbol u n a r y  radix Tur ing  machines,  as defined by  sets of quadruples.  
The  size of a Tur ing  machine  is defined to be the  number  of quadruples  
t h a t  define it. A single step in a computa t ion  is defined to be a shift of 
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the tape by 1 square (left or right) or a single print or erasure on a 
square. 

Our theorems, if not our examples, refer to arbitrary devices and any 
measures of size and step-counting tha t  satisfy the axioms. 

1. The natural numbers are N = 0, 1, 2, . . -  . We let (~ )  with 
i ranging over N denote a recursively enumerable (r.e.) sequence of all 
partial recursive (p.r.) functions of one variable. We let (~i~), k being 
a fixed integer => 2, denote an r.e. sequence of all p.r. functions of k 
variables. 

DEFINITION (Rogers, 1958). The sequence (9~) has an acceptable Godel 
numbering if and only if it satisfies the universal Turing machine theorem 
and the iteration theorem, where 

UNIVEI~SAL TIMING MACHINE TItEOREM. There exists a partial recursive 
function f such that f(i ,  x) = 9i(x) for all i and x. 

ITERATION THEOREM. There exists a recursive function s such tha t  
~2(x, y) = ~o~(~.~)(y) for all i, x, y. 

THEOREM (Rogers' 1958). / f  (9~) and ( ~ )  both have acceptable GodeI 
numberings, then one of these sequences is just a recursive permutation of 
the other, i.e., there exists a 1-1 onto recursive function f:  N ~ N such that 
~f(i) = ¢~ for all i. 
This is a deep theorem with immediate consequences, as we shall see, 
for our study of machine size. 

We assume tha t  each ~ is computed by some set of instructions M~. 
M~ may be a Turing machine, a program for an idealized computer, or a 
set of equations. We say tha t  the sequence (Mi) has an acceptable Godel 
numbering if (~o;) has one, and in the remainder of this paper we always 
assume that  (~ )  has one. Roger's theorem allows us to assume, and so 
we do assume without loss of generality, tha t  any two classes of ma- 
chines (M~) and (T~) (both with acceptable Godel numberings) are so 
ordered tha t  M~ and T~ compute the same function 9~. 

Axlo~as. A reeursive function I] mapping N (viewed as the set of in- 
dices) ---* N (viewed as the set of sizes) is called a measure of the size of 
machines, [ i [ being called the size of Mi  , i f  and only i f  

(1) there exist at most a finite number of machines of any given size and 
(2) there exists an effective procedure for deciding, for any y, which 

machines are of size y. 
Suppose we compare the machines in one class (M~) with those in 

another (T~). For example, (M~) might be the class of 1-tape 2-symbol 
Turing machines, while (Ti) might be the class of 10-tape 10-symbol 
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Turing machines. The following proposition shows that  the size of M~ 
is approximately equal to the size of T~. I t  is an immediate corollary 
of Roger's theorem: 

PROPOSITION 1. Let II M and II ~ be measures of the size of the machines 
( Mi) and ( T~) respectively. Then there exists a recursive function g such 
that for all i: 

1. ] i IM --<-- g I i [r (i.e., M~ cannot be much larger than T~) 
2. g i i I~ >= l i Ir (i.e., T~ cannot be much larger than M~). 

Proof. Let g(x) = max{gl(x),  g2(x)} where gl is defined so that  
l i ]M ----< gl ] i  Ir and g2 is defined so that  g2 [i  1~ ~ l i Ir : To compute 
g~(x), note that  { i l l  i [r = x} is finite and may be determined effec- 
tively. Let gl(x) = max{ l i IM ] i satisfies l i l t  = x}. Let g2(x) = 
max { l i l t  I i satisfies l i l ~  = x}. Q.E.D. 

If M~ is much smaller than M~., then one suspects that  T~ is smaller 
than T j .  This is the content of the following: 

PROPOSITION 2. There exists a recursive h such that for all i, j: 
1. l i l ~  ~ I J l -  ~ l i l ~ "  <= h l j l r  

2. h i l l ,  < i j [ ~ I i l ~  <= ]Jlr 
Proof. First note that  the g in proposition 1 can be made monotoni- 

cally increasing by setting 
g(x) = 1 + max {gl(x), g2(x), g(x - 1)}. 

We assume that  g is monotonically increasing. Set h(x) = gg(x): 

1. If l i l ~  =< ] J l ~ ,  then l i l t  = g l i l M  (bY 2 of proposition 
1) =< g ]j[M (because g is monotonically increasing) =< gg [ j  [r (by 1 
of proposition 1) = h I J I t .  

2. If h l i l ~  < I J t ~ ,  then by a similar argument g l i t r  =< 
gg [ i ] ~ = h I i I M <= I J I M ~ g [ j IT, and since g is monotonically in- 
creasing, I i [~ =< I J I t .  Q.E.D. 

2. A Turing machine may compute the constant function c~ (x) = 
n by storing all n digits of the response inside its quadruples. In  general 
such a machine will be overly large. For example, if n = 101°, a smaller 
machine may  output 10 ~° by multiplying 10 by itself 10 times, rather 
than by remembering all 101° digits. We show that  any infinite r.e. se- 
quence of machines contains some machines whose size can be reduced 
in this way. 

TI~EOI~E~ 1. 1. Let g by any recursive function with infinite range 
(g enumerates indices of an infinite sequence of machines). 

2. Let f be any recursive function. Then there exist i, j ~ N, both 
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uniform in f, g such that 
3. ~¢ = ~(j) 
4. f ] i I < [ g(J) [ (i.e., M~ is considerably smaller than M~(~)). 

EXAMPLe. If  f ( x )  = 100 x, then Mo(~') is 100 times as large as M~, 
though both Mg(~.) and M~ compute the same function. 

Proof. We give a procedure for determining the two integers i and j 
uniformly in f,  g. Consider the following set of instructions: 

"With  inputs x and y, first compute f l Y I. Then compute g(0), 
g(1), - . .  until the least j is found such that  f ] y I < I g(J) I. Then 
compute ~g(~)(x) and give ¢~(i)(x) as output."  

~ (x, y) whose These instructions define a partial recursive function 2 
recurslon theorem then supplies an integer index z is uniform in f, g. The " 1 

i which is uniform in f, g such that  

Equation 1: ~i(x) = ~2(x, i) for all x. 

We shall show tha t  this is the desired i. 
Conditions 1, 2 ensure that  we can find a j uniformly in f, g that  

satisfies 4, f I i I < [ g(J) I: First determine i, which we have shown to be 
uniform in f, g. Then compare f l i I with I g(0) ], I g(1) [, .-- until a 
j is found that  satisfies 4. For this j (cf. Eq. 1 and above instructions) 

2 x Q.E.D. condition 3 is satisfied, ~ ( x )  = ~, ( , i) = ~o(~)(x) for all x. 
g is an algorithmic function for enumerating an infinite set of ma- 

chines. The constructive nature of this proof enables one to effectively 
replace g by a function g' which enumerates machines that  are no larger, 
and sometimes are considerably smaller than those enumerated by g. 

I t  has been said that  since practically all computable functions are 
primitive recursive, one does not need general recursion for any practical 
purposes. Theorem 1, though, gives practical reasons for favoring gen- 
eral recursion: I t  implies tha t  there exists a primitive recursive function 
whose smallest derivation (defining equations) in the primitive recur- 
sire format is considerably larger than its smallest derivation in the 
general recursive format. More precisely, suppose primitive and general 
recursion are defined by derivations as in Davis (1958). Take the size 
of a derivation to be the number of letters in it. Then each primitive 
recursive function has at least one smallest primitive reeursive deriva- 
tion. The set of all such smallest derivations is r.e.; let g enumerate them. 
Upon setting f ( x )  = n.x ,  the theorem supplies a primitive recursive 

i The recursion theorem asserts that for every partial reeursive function h 
there exists an integer i which is uniform in h such that ~(x) = h(x, i) for all x. 
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function whose smallest primitive recursive derivation is n times as 
large as its smallest general reeursive derivation. The method of theorem 
2 can be used to show that the primitive recursive derivation and the 
much smaller general reeursive derivation take approximately the same 
number of steps to compute the same function. 

8. When a machine is reduced in size, it frequently happens that 
the smaller machine takes more steps than the original larger one to do 
its computations. To prepare the way for a study of this phenomenon, 
we now introduce the axioms of Blum (1967) for step-counting. TNs 
is done by associating with each partial recursive function ~ another 
partiM reeursive function 4~ called its step-counting function. Intui- 
tively, @,(x) represents the number of steps taken by M~ with input x 
to compute ~(x) .  

AXIOMS. Suppose the sequence of all partial recursive functions (~i) 
has an acceptable Godel numbering. Let (~)  denote any r.e. sequence of 
(some but not necessarily all) partial recursive functions. We say that 
(q~) is a sequence of step-counting functions for (¢i) if  and only if 

1. ~ (x )  is defined *:~ q,~(x) is defined. 
2. There exists a recursive function R such that 

{1 if ~ ( x )  = y 
R( i, x, y) = if  not. 

The first axiom asserts that if ~i(x) is defined, then the number of 
steps required to compute it is finite, and vice versa, if the number of 
steps required to compute ¢~(x) is finite, then ~4(x) is defmed. We shall 
write "~(x )  < ~ "  instead of "¢i(x) is defined," and "q~(x) = ~ "  
instead of "q)~(x) is undefined." The second axiom asserts that there is 
an algorithm for deciding whether or not Mi with input x halts in y steps. 
The predicate R of this axiom is similar to Kleene's T-predicate. 

We note that axioms 1 and 2 are independent: A sequence of step- 
counting functions that satisfies axiom 1 but not 2 is obtained by setting 
• ~ = ~ for all i. On the other hand, ~ ( x )  = 0 for all i, x satisfies 2 but 
not 1. 

In the following sections, we shall always assume that (@~) is a se- 
quence of step-counting functions for (~) .  The function R will never be 
mentioned, though it is implicit in every statement of the form "De- 
termine whether @~(x) = y". This is determined by computing R(i, x, y). 

4. The following theorem, which extends theorem 1, shows that 
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the increase in number of steps that  occurs when a machine is reduced in 
size is negligible for all functions tha t  are sufficiently difficult to compute. 

THEOREM 2. There exists a recursive function h such that if  
1. g is any recursive function with infinite range 
2. f is any recursive function 

then there exist i, j E N, both uniform in f, g, such that 

4. f ] i ]  < [g(j) [ 
5. for all but a finite number of integers x, [¢g(~)(x) defined ~ ~ ( x )  <= 

h( x, ~o(~)(x))] (i.e., M~ does not take too many more steps than Mg(j) ). 
Remark. The function h(x, y) = c(x + y), c = constant, serves for 

the class of Turing machines defined in the introduction. If  these Turing 
machines can have an unbounded number of tape symbols, then one 
may choose c = 1. 

Proof. We define a recursive function r. This r has the property tha t  
for any f, g satisfying 1, 2 there exist integers i, j, in fact, the ones supplied 
by the proof of theorem 1, and there exists an integer w such that  

(a) ~g(~.)(x) defined ~ r(w, x, ¢g(i)(x)) -- ~i(x) for all x. 
Out of r we define h to be the recursive function 

h(x, y) = max {r(w, x, y) ] w <= x} 

whence it follows tha t  for all sufficiently large x 
(b) ~o ) (x )  defined ~ h(x, ¢I)~(j)(x)) => r(w, x, 4~o(j)(x)). 

Together, (a) and (b) prove 5. 
DEFINITION OF r(W, x, y). We choose some fixed effective 1-1 onto 

map N - ~ N X  . . -  XN. The number w is a code word for a 5-tuple 
, v J 

5 

(Wl, "" , ws). Set f = ~1,  g = ¢~2. Determine i in terms of these f, g, 
using the algorithm in the proof of theorem 1. This is possible since 
tha t  algorithm defines an index i for any partial recursive functions f,  g, 
not necessarily satisfying 1, 2 ( though j is not  necessarily defined unless 
1, 2 are satisfied). Now set r(w, x, y) = ~ ( x )  if all the following hold: 

(i) ~)~ l i  I = w3 ( s o f l  i ] is defined) 
(ii) ~ 2 0  q)~2(]~) -- w5 (so g(0), . . .  , g(w4) are defined) 
(iii) There exists a j  such t h a t j  =< w4 a n d f l  i l < I g(J) [ 
(iv) The l ea s t j  satisfying (iii) satisfies ~g(~.)(x) = y 

Set r(w, x, y) = 0 otherwise. 
If  ( i ) - ( iv)  are satisfied, then ~ and 4~g(~.) have the same domain, and 
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• g(j)(x) is defined by (iv).  We note tha t  if f, g satisfy 1, 2, then there 
exists a j such tha t  Ig(J)  I > f l i ] .  Hence there exists a w = 
{wl, . - -  , w~}, wl ,  w2 being indices of f, g, which satisfies ( i ) - ( i i i ) .  For  
this w, equation (a) is satisfied. Q.E.D. 

One can show tha t  theorem 2 is made false by  replacing the "for  all 
but  a finite number of integers x"  in 5 by  "for all x". This is interesting 
because theorem 3, which looks so much like theorem 2, does have "for  
all x"  in i~s version of 5. 

THEOREM 3. 1. Let g be a recursive funetion satisfying ~g(s) = ~ for all j .  
2. Let f ,  h be reeursive functions. 

Then for every i ~ N there exists a j ~ N which is uniform in f,  h, g, i, 
such that 

4. f l i I < ] g(J) ] (i.e., M~ is considerably smaller than M~(i)) 
5. For all x[~i(x) defined ~ h(x,  ~ ( x )  ) < ~(3")(x)] (i.e., M i  takes 

considerably fewer steps than Mg(i ) ) 
Proof. Select any integer i. We seek a j for which 3, 4 and 5 are true. 

Th i s j  is gotten as follows: We define a partial reeursive function r(n,  ~, y)  
uniformly infi  h, g, i (Eq.  1). By  an application of the recursion theorem 
we obtain from it a recursive function q such that  ~q(~)(x) = r(n,  x, q(n)  ) 
(Eq.  2). This q is uniform in f,  h, g, i. Finally, we show how to effec- 
tively select n, so t h a t j  = q(n)  satisfies 3, 4, 5. 

Equation 1: r(n,  x, y)  = n if f l i i  >= i g(Y) I (i.e., if 4 is not 
satisfied with y = j )  

~ ( x )  if (i) f l i l  < Ig(Y)  I (4 is sat- 
isfied with y = j )  

and (ii) ~i(x) is defined 
and (iii) h ( x , ~ ( x ) )  < ~o(~)(x) (5 

is satisfied with y = j )  
undefined otherwise. 

This r is computable. The reeursion theorem ~ supplies a recursive func- 
tion q which is uniform in f, h, g, i, such that  ~(~)(x)  = r(n,  x, q (n ) ) .  

2 The extended recursion theorem states that for every partial reeursive func- 
tion r(x~ , . . .  , x,~ , y~ , . . .  , y,, , z) there exists a recursive function q which is 
uniform in r such that ~q¢~ . . . . .  ~)(y~ , .. •, y~) = r(x~ , . . . ,  x,~ , y~ , . . .  ,y~ 
q(x~, ... , x~)). 
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Plugging into the definition of r, we see that  

Equation 2: ~( . ) (x)  = n if f l i I >= I gq(n) I 
~,(x) if (i) f l i l  < Igq(n) I 

and (ii) ~i(x) is defined 
and (iii) h(x,a~, (x))  <~gq(.)(x) 

undefined otherwise 
H o w  TO SELEC~r n. First  note that  f I i ] > ] gq(n) ] means that  there 

exists a machine which computes the constant function ~ (~) (x )  -- 
W~(~)(x) = n, whose size is less than a certain fixed integer f I i [. This is 
impossible for all n, so there exists an n such that  f l i ] < I gq(n) I. 
To find th is  value of n, simply test q(0), q(1), q(2), . . .  until an n 
appears that  satisfies f ] i [ < [ gq(n) 1. For this particular choice of n, 
s e t j  = q(n). So 4 is satisfied. I t  follows that 

Equation3: ~¢(x) = ~dx)  if (ii) ~dx)  is defined and 
(~i) h(x, ~(x)  ) < ~ ) ( x )  

undefined otherwise 

5 is satisfied. Suppose ¢~(x) is defined, but  that  ( to the contrary) 
h(x, (~(x) ) ~ Cq(~.)(x). Then r(n, x, j )  is undefined. Hence ~j(x) 
~q(j)(x) s ince~(j ) (x)  ~ h(x, ~ ( x ) )  < oo. This contradicts 2: ~(j) = ¢~.. 

3 is satisfied. If ~ ( x )  is undefined, then ~j(x) is undefined (Eq. 3), so 
~g(~)(x) = ~j(x) = ~dx) .  If ~ ( x )  is defined, then the proof of 5 shows 
that  h(x, ~)~(x)) < ~( j ) (x) ,  so (ii), (iii) in Eq. 3 are satisfied and there- 
fore ~g(j)(x) = ~i(x). Q.E.D. 

Any algorithmic function g for reducing the size of machines can thus 
be effectively replaced by  another function g' that  further reduces the 
size and number o~ steps taken by  infinitely many machines. 

We note that  theorem 3 is curiously symmetric with respect to size 
4 and steps 5. 
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