:C‘OW\ C.)C K(@ZC\Z
Notth- Hollaed 1L,

270 GENERAL RECURSIVE FUNCTIONS CH. XI

(and writing “¢” for “g,”, “s,”" for “oz,”, “f” for “f;”, etc.), o'nly those
equations of the form f(x,, ..., x,)=>x which & EY are deducible from

E:P:l::q;:”, E,; and by Lemma Ilc no others become deducible
1 q

when Ezfl::q;;‘l is replaced in the list of assumption equations by
1 i

B, Bo oe Bt

Lemma Ile. Let o, .. ' ‘
¢ s @ and for each i (i =1, ..., k), either (A) ¢, is one of the .functwns
Gy ++ oy i, 0 (B) @ is defined recursively by a system E, of equations from
Prigs - +» Piiq; (qs = 05 fix, +
equations which defines @ recursively from §y, ..., 4y

Proor or LEMMA Ile. If it is not already the case that each of the
{’s is introduced under (A) as one of the ¢’s and is thefeafte.r used }1nder
(B) as oneof the gy, .. ., @j;,, for some @, we can make it so (increasing &)
by introducing some applications of the identical schema (cf. Lemrrfa IIa).
Then, by rearranging and renumbering the ¢’s and E,’s and changmg ’Fhe
function letters in the latter (if necessary), we can bring about the situation
described in Lemma IId, with % > [, ¢, = ¢, and with f;, ..., f; as the
given function letters of E;,; ... Ep. Let Ebe Eyyy - .. Ep

Proor oF TueoreM 1I. By Lemma Ila and the hypothesis of the
theorem, the hypotheses of Lemma IIe are satisfied.

§ 55. General recursive functions. The schemata (I)—(V) are

not the only schemes of definition of a number-theoretic function, ab
initio or from other number-theoretic functions, which can be expresseti 1
by systems of equations, using in the equations only function letters, /,

number variables and numerals.

Let us consider other examples, calling them all “‘recursions”. We keep
the equations in the informal language for the time being; and to keep
them of the sort described now, we eliminate certain other modes of |

expression which were used in Chapter IX, e.g. I (#B), wy,<. (3#E),

y<z
cases {#F). -
Thus (a) of Example 1 § 46 we can write now
=0, y) = 1,
(a) nz',y) = (y + o(2) " (2, 9),

oly) = =(y,)

., 9y be a finite sequence of fumctions such that

., fig; <). Then there is a system E of

Teatradocten do (e pathesatics

§ 55 GENERAL RECURSIVE FUNCTIONS 271

(defining the auxiliary function = as well as ¢), while (a) of Example 2
§ 46 is already in the form under consideration. We showed in § 46 that
these course-of-values recursions are reducible to primitive recursion, i.e.
the same function can be defined by a series of applications of Schemata
(I) — (V).

As another very simple example, consider the recursion

(b) { ¢{0,2) =z,
oy, 2) = oy, oy, 2)).

This is not primitive, because the z, instead of being held fixed as a
parameter, has o(y, 2) substituted for it in the induction step of the
definition. This recursion too can be reduced to primitive recursion.
Expanding (b) for y =0, 1, 2, ... (as we expanded (1) in § 43), we find
that the value ¢(y, 2) is

a(0, a(1, 6(2, ... o(y—3, o(y—2, o(y—1, 2)))...))).
Consider the sequence of the numbers z, o(y—I, 2), o(y—2, a(y—1, 2)),
ooy 0(0, o(1, 6(2, ... 6(y—3, o(y—2, o(y—1, 2)))...))), which occur in
building up this value from the inside instead of as (b) gives it to us.
These are the values foru = 0, 1, 2, ...,y of the function w(u, ¥, z) defined
by the primitive recursion

(b fEph —
p.(u', Y, z) e G(y ;ul» p.(u, Vs z))
Since the value for # = y is the same as the value ¢(y, 2),

(bg) ¢, 2) = u(y, 9, 2);
as can also be seen by using induction on # to prove that
(C) ‘-"(u" Y, 2) = (o, y, O'(y, z))’

and thence that the ¢ defined by (b,) and (b,) satisfies (b).

In a similar manner, Péter (1934, 1935a) showed that every recursion
(called “‘nested”) in which ¢(0, 2) is a given function of z, and ¢(y’, 2)
is expressed explicitly in terms of ¥, z, given functions (and constants),
and ¢(y,) as a function of ¢, is reducible to primitive recursion.

Are there recursions which are not reducible to primitive recursion; and
in particular can recursion be used to define a function which is not
primitive recursive?

This question arose from a conjecture of Hilbert 1926 on the continuum
problem, and was answered by Ackermann 1928. Let (b, a) = a+-b,
£1(b, a) = ab, Ey(b, a) = a®; and let this series of functions be extended
by successive primitive recursions of the form £,.(0, a) = a, &,.(b’, a) =

En(ln(b, @), a) (n > 2), so that e.g. Ey(b, a) = a*® with b exponents.

272 GENERAL RECURSIVE FUNCTIONS CH. XI

Now consider £,(b,) as a function £(», b, a) of all three variables. Let « be
the primitive recursive function defined thus,

0 if =0,
(d) an,a) =1 1 if n =1,
a otherwise.

Then the following recursion defines £(z, b, a),

E(O: b, a) = a-+-b,
(e) En',0,a) = a(n, a),

E(n', ', a) = E(n, E(n’, b, a), a).
This is an example of a “double recursion”, i.e. one on two variables
simultaneously. If the function (n, b, a) defined by (e) were primitive
recursive, then the function £(a) of one variable defined explicitly from it
thus,
(f) &(@) = &(a, a, a),
would also be primitive recursive. Ackermann'’s investigation shows
that §(a) grows faster with increasing ¢ than any primitive recursive
function of a (just as 2¢ grows faster than any polynomial in a), i.e. given
any primitive recursive function ¢(«), a natural number ¢ can be found
such that £(a) > ¢(a) for all 2 > ¢. Thus £(a), and hence also &(n, b, a)
(since £(a) comes from it by the explicit definition (f)), are not primitive
recursive. This example was simplified by Péter 1935 (cf. also Hilbert-
Bernays 1934 pp. 330 ff.) and Raphael Robinson 1g48.

A different method was followed by Péter 1935 in constructing another
example. The class of the initial functions definable by Schemata (I) —
(III) is enumerable. Then the class of the primitive recursive functions
definable using Schema (IV) or (V) just once is enumerable, since the
m-+1-tuples ¢, yy, ..., xm for (IV) or the pairs ¢, x (or ¢,) for (V)
formed from an enumerable class are enumerable (§ 1). Then the primitive
recursive functions definable using Schema (IV) or (V) a second time are
enumerable; and so on. Thus the class of all the primitive recursive
functions is enumerable, as we could also see by enumerating the systems
E for Theorem II § 54. In particular, the primitive recuisive functions of
one variable are enumerable. Hence by Cantor’s diagonal method (§2)
they cannot comprise all the number-theoretic functions of one variable;
and if

?0(@), @1(a), 9s(a), ...
is any enumeration of them allowing repetitions (i.e. any infinite list of
them in which each occurs at least once), then ¢,(a)4-1 is a number-

§ 55 GENERAL RECURSIVE FUNCTIONS 273

theoretic function of one variable not in the enumeration, and so not
primitive recursive. The enumerating function ¢(n,a) such that
¢(n, @) = @,(a) is a function of two variables which is not primitive re-
cursive, since @,(a2)+1 = ¢(a, a)+1. This of course only establishes
that number-theoretic functions ¢,(a)41 and ¢(n, a) can be found
which are not primitive recursive. What Péter did was to show that, for
a suitable enumeration (with repetitions) of the primitive recursive
functions of one variable, the enumerating function can be defined by a
double recursion (besides applications of Schemata (I) — (V)).

ExampLE 1. Do double recursions lead to any predicates which are
not primitive recursive? Yes, for 1-¢(a, @) takes only O and ! as values,
and cannot occur in the above enumeration, so it is the representing
function of a predicate not primitive recursive. (Skolem 1944.)

Péter 1936 studies k-fold recursions for every positive integer k. These
comprise primitive recursions for 2 = 1, double recursions for % = 2,
and so on. She shows that, for each successive %k, new functions are ob-
tained. Functions definable using (besides explicit definition) recursions
up to order % she calls “%-recursive’”’. She shows that every 2-recursive
function is definable by a single double recursion of the form

() {‘P(o' b)=cp(n,0)= 1,

g o(n',) = aln, b, o(n, B(n, b, o(n’, 1)), o(n’, b))

besides applications of Schemata (I) — (V); and similarly (with a scheme
reducing to (g) for & = 2) for each & > 2.

ExampLE 2. To settle a point raised in § 45, suppose ¢ is 3-recursive
but not 2-recursive, and ¢ is 2-recursive but not l-recursive, i.e. not
primitive recursive. Then “if ¢ is primitive recursive, then ¢ is primitive
recursive’ is vacuously true, but “‘¢ is primitive recursive in ¢” is false,
since that would make ¢ 2-recursive.

These subjects are treated in Péter’s monograph 1951 (not available
during the writing of the present book).

It is not to be expected that the %-fold recursions with finite exhaust
the possibilities for defining new functions by recursion. In 1950 Péter
uses “‘transfinite recursions” (first employed by Ackermann 1940) to
define new functions.

This brings us to the problem, whether we can characterize in any
exact way the notion of any “recursion”, or the class of all “recursive
functions”’.

The examples (I) — (V), (a), (b), (e) (and others cited) of schemes of

274 GENERAL RECURSIVE FUNCTIONS CH. XI

definition of a function which we have thus far agreed to call “‘recursions”
possess two features: (i) They are expressed by equations in the manner
which we analyzed formally (for (I) — (V) particularly) in § 54. (i) They
are definitions by mathematical induction, in one form or another,
except in the trivial case when they are explicit definitions.

The characterization of all ‘‘recursive functions”” was accomplished in
the definition of ‘general recursive function’ by Godel 1934, who built
on a suggestion of Herbrand. This definition succeeds by a bold general-
ization, which consists in choosing Feature (i) by itself as the definition.

We say then that a function ¢ is general recursive, if there is a system
E of equations which defines it recursively (§ 54, with /= 0).

This choice may seem unexpected, since the word “recursive’” has its
root in the verb “recur’”’, and mathematical induction is our method for
handling recurrent processes. The meaning of the choice is not that
Feature (ii) will be absent from any particular recursion, but that it
is transferred out of the definition itself to the application of the definition.
To show by finitary means that a given scheme has Feature (i), except
in trivial situations, one will presumably have to make use of mathemat-
jcal induction somehow. But in defining the totality of general recursive
functions, we forego the attempt to characterize in advance in what form
the intuitive principle of induction must manifest itself. (By Godel's
theorem § 42 we know that the attempt at such a characterization by
the formal number-theoretic system is incomplete.)

In stating the Herbrand-Godel definition of general recursive function
exactly, there is some latitude as to the details of the formalization, so
that versions of the definition can be given which are equivalent to
Godel’s but a bit simpler (cf. Kleene 1936, and 1943 § 8). The present
version is that of Kleene 1943, except for inconsequential changes in Rl
and R2 which simplify § 56 slightly, and the inclusion of functions of 0
variables in the treatment. (To relate the present treatment to Kleene
1043, we note: (1) The inclusion of functions of 0 variables does not alter
the notion of general recursiveness for functions of #» > 0 variables. For
one can show that, if an auxiliary function letter h occurs as a term
with O arguments in the assumption equations, all occurrences of this
term may be changed to k(c), where k is a new function letter and c a
new variable, without altering the class of the deducible equations
containing only the principal function letter. After this: (2) One can
show in a few lines that exactly the same equations of the form
f(x,, ..., x,)=x, where f is a function letter and x;, ..., X,, X are nu-
merals, are deducible from given assumption equations by the present

§ 55 GENERAL RECURSIVE FUNCTIONS 275

Rl and R2 as by the R1 and R2 of 1943; or with only a little more
trouble one can carry out the treatment of §§ 54 and 56 with the Rl
and R2 of 1943.)

A function ¢ is gemeral recursive in functions {,, ..., §,, if there is a
system E of equations which defines ¢ recursively from ¢y, ..., §; (§ 54).
This includes the definition of general recursive function as the case
] =0. For I > 0 (Kleene 1943), we are usually considering a scheme or
functional @ = F({y, ..., §;) (§47) which defines a number-theoretic
function ¢ of # variables from ¢y, ..., §;, for any / number-theoretic
functions {y, ..., ¢, of my, ..., m, variables respectively, or any such
functions subject to some stated restrictions. Then if the E can be given
independently of ¢y, ..., §, (for the fixed , I, m,, ..., m), we say that
the scheme F is general recursive, or that ¢ is general recursive uniformly in
dy, -+ ., §y. Since our treatment will always give uniformity in the {¢’s
(subject to any restrictions stated), we usually omit the word “uniformly”’
except for emphasis. (Unlike the primitive recursive case § 47, if the
original scheme is for somerestrictionon ¢y, ..., ¢,, itis not implied that
the scheme can necessarily be extended to a general recursive one de-
fining a @ without restriction on the ¢y, ..., ;) _

Using the present terminology to restate the results of Lemmas Ila
and Ile, we now have:

TaeoreEM II (second version). If ¢ is defined from ¢y, ..., 4 by
a succession of applications of general recursive schemes, then ¢ is general
recursive Yy, ..., Yp

In particular, Schemata (1) — (V) are general recursive. Hence: If
o s primitive recursive in Yy, ..., 4y, 1t is general vecursive in Yy, ..., g1
Amy primitive vecursive scheme is general vecursive. If ¢ is primitive re-
cursive, it is general recursive.

The definition of general recursiveness has been stated for the case
that the function ¢ is already known, by intuitive use of the same
equations which are formalized as the E, or by some other means. This
anticipates our purpose of showing that various functions and schemes,
known to us independently of the formalism of recursive functions, are gen-
eral recursive (as we have just done for the primitive recursive functions
and schemes). For the case that the ¢ is not previously known, we then
have: A system E of equations defines recursively a function of # varia-

bles from {,, ..., ¢, if for each n-tuple #,, ..., ¥, of natural numbers,
1 1
there is exactly one numeral x such that E“;‘l:'_zll, E | x5, .. X)=xX,

where f is the principal function letter of E, and g,, ..., g are the given

