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Definition (Cartesian Closed). Given a category C with finite products, one can construct a corresponding mul-
ticategory with the same objects as C and with multimorphisms from [A1, . . . , An] to A′ being morphisms of C
from A1 × · · · ×An to A′. A category C is said to be cartesian closed if it has finite products and its corresponding
multicategory is closed (the corresponding multicategory is always symmetric, in fact cartesian, so left and right
closed are equivalent).

More explicitly, a category C is cartesian closed if it has finite products and for every pair of objects A and B
there exists an object E and a morphism e : A×E → B such that for every object C and morphism f : A×C → B
there exists a unique morphism f ′ : C → E such that (A× f ′) ; e equals f (where A× f ′ is 〈π1, π2 ; f ′〉). Often the
object E is denoted as BA, the morphism e is called evalA,B , and the induced morphism f ′ is denoted λA,B,Cf (with
subscripts often omitted in both cases).

Exercise 1. Given a cartesian-closed category C, prove that the C-indexed category mapping each object I of C
to its simple-slice category C // I has simple products. Hint: given a set I and an indexed collection of sets {Ai}i∈I ,
the type of a function that maps each element i of I to an element of Ai is often denoted as

∏
i∈I Ai, but when

it happens to be the case that each set Ai is the same regardless of the index i, meaning there is some set A such
that Ai equals A for all i in I, then the type of a function is simply denoted as I → A or AI .

In order to focus on the most interesting aspects of the proof, just give the definition of
∏
I,J on objects of C //(I×

J) and give the transposition between C(πI,J) and
∏
I,J . Show that this transposition is bijective, but do not show

naturality of the transposition nor naturality of
∏
I,J with respect to I.

Definition. A concrete category A
U−→ X is calledM-topological, for a collection of X-sourcesM, if every structured

source in M has a unique initial lifting.

Example. In the case where M is all sources in X, then this is simply the definition of a topological category. In
the case where M is all mono-sources in X, then this is known as monotopological.

Exercise 2. Given aM-topological concrete category A
U−→ X, prove that if X has an (E ,M)-factorization structure

then A has an (EU , Initial MU )-factorization structure, where the collection EU is the collection of A-morphisms
whose underlying X-morphism is in E , and where the collection Initial MU is the collection of initial A-sources
whose underlying X-source is in M.

Definition. Let Φ be a collection of “abstract symbols” each paired with a natural number n indicating the arity
of the symbol. For example, Φ = {≤: 2} has one abstract symbol, ≤, of arity 2, indicating that there should be a
relation ≤ that is binary.

Given a Φ, the construct Rel(Φ) is comprised of the following:

Object An object is a set A along with, for each symbol-arity pair R : n ∈ Φ, a relation RA ⊆ An.

Morphism A morphism from 〈A, {RA}R:n∈Φ〉 to 〈B, {RB}R:n∈Φ〉 is a function f : A → B such that, for every
symbol-arity pair R : n ∈ Φ, given any n-tuple ~a in RA, the n-tuple f(~a) is in RB (where f(~a) is shorthand for
the n-tuple 〈f(ai)〉i∈{1,...,n}).

Example. The construct Rel(≤ : 2) is more explicitly comprised of the following:

Object An object is a set A along with a binary relation ≤A ⊆ A×A.

Morphism A morphism from 〈A,≤A〉 to 〈B,≤B〉 is a function f : A → B such that, for all a1 and a2 in A, if
a1 ≤A a2 holds then f(a1) ≤B f(a2) holds.

That is, Rel(≤ : 2) is simply Rel(2), and Rel(Φ) is a generalization of Rel(2) that enables both multiple relations
and the ability for each relation to have its own arity.
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Remark. The construct Rel(Φ) is topological. Given a structured source {A fi−→ U(〈Bi, {Ri}R:n∈Φ〉)}i∈I , its
unique initial lifting is given by the object 〈A, {RA}R:n∈Φ〉, where RA for each R : n in Φ is defined as the sub-
set {~a ∈ An | ∀i ∈ I. fi(~a) ∈ Ri}. Since Set, and in fact every category, has an (Iso,Source)-factorization structure, by
your proof above we know that Rel(Φ) has an (IsoU , Initial SourceU )-factorization structure. Furthermore, Rel(Φ)
has initial liftings of U -structured isomorphisms, and so we can apply the following lemma to Rel(Φ).

Lemma. Given any concrete category A
U−→ X with an (IsoU ,M)-factorization structure for some collection of

sources M, and with unique initial liftings of U -structured isomorphisms, any implicational subcategory of A formed
by a collection of identity-carried implications, meaning A-morphisms whose underlying X-morphisms are identities,
is concretely reflective over X.

Proof. Because all of the implications are identity-carried, they all belong to IsoU . Consequently, due to the as-
sumption that A has an (IsoU ,M)-factorization structure, we know that the implicational subcategory is at least
IsoU -reflective. Given an object A of A, let r : A→ A′ be an IsoU -reflection arrow into the implicational subcategory.
This means that Ur : UA → UA′ is an isomorphism, and clearly it is furthermore U -structured, so by assumption
it has a unique initial lifting. Let s : A′′ → A′ be the initial lifting of Ur. This means that Us equals Ur, which
implies that U idA′ equals (Ur)−1 ;Us, and so initiality of s implies there exists a morphism s′ : A′ → A′′ such that
Us′ equals (Ur)−1. This s′ is in fact the inverse of s since, by faithfulness of U , the fact that they have opposite do-
main and codomain and have underlying morphisms that are inverses of each other implies that they are themselves
inverse of each other. It is easy to show that implicational subcategories are isomorphism dense, implying that s′ is
furthermore an isomorphism contained in the implication subcategory. Reflection arrows are essentially unique, and
so composing the reflection arrow r with the isomorphism s′ contained in the implication subcategory necessarily
results in a reflection arrow. Furthermore, the underlying morphisms of r and s′ are inverses of each other, so the
underlying morphism of r ; s′ is an identity morphism, making r ; s′ an identity-carried reflection arrow for A into the
implicational subcategory. Since such an identity-carried reflection arrow exists for all objects of A, the implicational
subcategory is by definition concretely reflective over X.

Exercise 3. Let Φ be the R≥-indexed collection {dδ : 2}δ∈R≥ , where the intention is to view a relation dδ(x, x
′)

as indicating that the distance from point x to point x′ is at most δ. Using the fact that the lemma above applies
to Rel(Φ), show that LMet is concretely isomorphic to a full concretely reflective subcategory of Rel(Φ) over Set.
More specifically, show the following, as the rest of the proof is mostly tedious (if the implications are correct):

1. Give a collection of identity-carried implications whose corresponding implicational subcategory happens to be
concretely isomorphic to LMet.

2. Give the corresponding propositional formulations of those implications, e.g. ∀x, x′. x ≈ x′ =⇒ x′ ≈ x

3. Given an object of Rel(Φ) in the implicational subcategory, define the corresponding distance function on its
underlying set.

4. Given an object of LMet, define the corresponding object of Rel(Φ) that happens to be in the implicational
subcategory.

5. Given an object A of Rel(Φ) in the implicational subcategory, prove that converting it into a distance function
and then back into an object of Rel(Φ) results in the original object A. You may assume the correspondence
between your identity-carried implications and propositional formulations has been justified.

Remark. Note that Rel(Φ) is also monotopological, since every mono-source is a source, and its underlying cat-
egory Set has an (Epi,Mono-Source)-factorization structure. Consequently, your earlier proof also indicates that
Rel(Φ) has an (EpiU , Initial Mono-SourceU )-factorization structure. Any identity-carried implication also belongs
to EpiU , and so your above proof implies that LMet is a full EpiU -reflective subcategory of Rel(Φ). This in turn
implies that LMet has an (EpiI ;U , Initial Mono-SourceI ;U )-factorization structure. But since LMet is a concrete
subcategory, I ;U equals U (where the former U is for Rel(Φ) and the latter U is for LMet), and so it has an
(EpiU , Initial Mono-SourceU )-factorization structure. And furthermore, LMet has both free objects (given by mak-
ing the distance between any two points 0) and cofree objects (given by making the distance between any two
points ∞), and so its epimorphisms and mono-sources coincide with those of the underlying category. Thus, putting
everything together, you have effectively proven that LMet has an (Epi, Initial Mono-Source)-factorization structure,
the most epic factorization structure possible.
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