Coalgebras

Ross Tate

February 28, 2018

Definition. Given an functor $T : \mathbf{X} \to \mathbf{X}$, the concrete category over \mathbf{X} of T-coalgebras $\mathbf{Coalg}(T)$ is comprised of the following:

Objects An object $\langle X, c \rangle$ is a pair of an (underlying) object X of **X** and an **X**-morphism $c: X \to T(X)$.

Morphisms A morphism from $\langle X, c \rangle$ to $\langle X', c' \rangle$ is an (underlying) **X**-morphism $f : X \to X'$ such that the following commutes:

$$\begin{array}{c} X \xrightarrow{c} T(X) \\ f \downarrow \qquad \qquad \downarrow T(f) \\ X' \xrightarrow{c'} T(X') \end{array}$$

Being a concrete category over \mathbf{X} , identity and composition are inherited from \mathbf{X} . Identities can easily be shown to make the square commute, and composition can easily be shown to preserve commutation of squares, so this is a well-defined category (concrete over \mathbf{X}).

Example. Given a set Σ , the function on sets $\lambda X. X^{\Sigma} \times \mathbb{B}$ extends to an endofunctor on **Set** by mapping a function f to the function $\lambda \langle x, b \rangle. \langle (\lambda \sigma. f(x(\sigma))), b \rangle$. A coalgebra of this functor is a set S and a function of the form $S \to S^{\Sigma} \times \mathbb{B}$. Note that such a function corresponds to a pair of functions $S \to S^{\Sigma}$ and $S \to \mathbb{B}$. The former further corresponds to a function $S \times \Sigma \to S$, and the latter corresponds to a (decidable) subset of S. This a coalgebra of this functor is a set (of states) S, a (transition) function $\delta: S \times \Sigma \to S$, and a (decidable) subset of (accepting) states. In other words, an object of **Coalg**($\cdot^{\Sigma} \times \mathbb{B}$) is essentially a Σ -acceptor without an initial state, and a morphism of **Coalg**($\cdot^{\Sigma} \times \mathbb{B}$) is essentially a morphism of Σ -acceptors that preserves and reflects transitions and accepting states.

Example. Let **Fin** be the category of finite sets. An object of $\mathbf{Coalg}(\mathbb{P}(\cdot)^{\Sigma} \times \mathbb{B})$ (concrete over **Fin**) is a nondeterministic finite automaton without an initial state. A morphism of $\mathbf{Coalg}(\mathbb{P}(\cdot)^{\Sigma} \times \mathbb{B})$ (concrete over **Fin**) is a morphism of non-deterministic finite automata that preserves *and reflects* transitions and accepting states.

Example. Let *B* be an abstract symbol denoting "blank", and let *L* and *R* be abstract symbols denoting "left" and "right". An object of **Coalg**(Option($\cdot \times \Sigma \times \{L, R\}$)^{$\Sigma + \{B\}$}) (concrete over **Fin**) is a Turing machine without an initial state, and a morphism of **Coalg**(Option($\cdot \times \Sigma \times \{L, R\}$)^{$\Sigma + \{B\}$}) is a morphism of Turing machines that preserves and reflects transitions, outputs, movements, and haltings.