Factorization Structures

Ross Tate

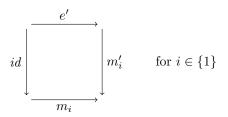
May 1, 2018

Definition (Factorization Structure). We amend the definition of an $(\mathcal{E}, \mathcal{M})$ -factorization structure on sources with the requirement that every source $\{f_i\}_{i \in I}$ has an $(\mathcal{E}, \mathcal{M})$ -factoration $(e, \{m_i\}_{i \in I})$ such that, for all indices i and i' in I, f_i equals $f_{i'}$ implies m_i equals $m_{i'}$. This property is provable classically but not constructively.

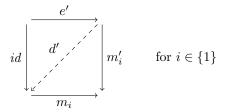
Lemma. Given a category **C** with an $(\mathcal{E}, \mathcal{M})$ -factorization structure on sources, if a morphism m has the property that the unary source $\langle m \rangle$ is in \mathcal{M} , then the binary source $\langle m, m \rangle$ is also in \mathcal{M} .

Proof. Define both m_1 and m_2 to be m. Let $(e', \langle m'_1, m'_2 \rangle)$ be an $(\mathcal{E}, \mathcal{M})$ -factorization of the binary source $\langle m_1, m_2 \rangle$ (with m'_1 equal to m'_2 since m_1 equals m_2). This means that the binary source $\langle m, m \rangle$, i.e. $\langle m_1, m_2 \rangle$, is the composition of the binary \mathcal{M} -source $\langle m', m' \rangle$ with the morphism e. By the definition of factorization structure, the collection of sources \mathcal{M} is closed under composition with isomorphisms. So if we can show that e' is an isomorphism, then the above facts imply that $\langle m, m \rangle$ is in \mathcal{M} .

To do so, note that the following indexed square commutes by construction of e' and m'_1 (and m'_2):

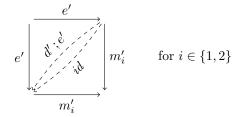


The top morphism e' belongs to \mathcal{E} by construction, and the bottom unary source $\langle m_1 \rangle$, i.e. $\langle m \rangle$, belongs to \mathcal{M} by assumption. Consequently, by the definition of factorization structure, there exists a unique morphism d' making the following indexed diagram commute:



Thus we have a retraction d' of e', i.e. a morphism such that e'; d' equals id. Furthermore, because m_1 equals m_2 and m'_1 equals m'_2 , the morphism d' additionally has the property that d; m_i equals m'_i for both i = 1 and i = 2.

Next we show that d' is in fact an inverse of e', i.e. that d'; e' equals id. To do so, notice that the following indexed square has two diagonals that make everything commute, since e'; d'; e' = id; e' = e' and d'; e'; $m'_i = d'$; $m_i = m'_i$:



Since the top morphism belongs to \mathcal{E} and the bottom source belongs to \mathcal{M} (both by construction), diagonalizations of this square must be unique, which implies d'; e' equals id. Thus e' is an isomorphism, with inverse d', making $\langle m, m \rangle$ an element of \mathcal{M} by the reasoning above.

Theorem. Given a category **C** with an $(\mathcal{E}, \mathcal{M})$ -factorization structure on sources, every morphism in \mathcal{E} is epic.

Proof. Suppose $e: A \to B$ is a morphism in \mathcal{E} , and suppose morphisms $f_1, f_2: B \to C$ have the property that $e; f_1$ equals $e; f_2$. In order to prove e is epic, we must prove that f_1 equals f_2 .

Let $(e', \langle m' \rangle)$ be an $(\mathcal{E}, \mathcal{M})$ -factorization of $e; f_1$, or equivalently of $e; f_2$. Then by the above lemma, $\langle m', m' \rangle$ is also an element of \mathcal{M} . The following, then, is an indexed commuting square whose top morphism belongs to \mathcal{E} , by assumption, and whose bottom source belongs to \mathcal{M} , by the above lemma:

$$e' \downarrow \xrightarrow{e} f_i \qquad \text{for } i \in \{1, 2\}$$

Therefore there exists a morphism d such that the following indexed diagram commutes:

$$e' \downarrow \overbrace{\underbrace{d}'}^{e} f_i \qquad \text{for } i \in \{1, 2\}$$

Since this commutes for both i = 1 and i = 2, we get that $f_1 = d$; $m' = f_2$, thus implying that e is epic.