Isomorphisms

Ross Tate

January 17, 2018

Example. The monoid $(\mathbb{R}, 0, +)$ is isomorphic in **Mon** to the monoid $(\mathbb{R}^{>}, 1, *)$ as evidenced by λx . e^{x} and λx . $\ln(x)$.

Example. The above also extends to an isomorphism in **Grp** between $\langle \mathbb{R}, 0, +, \lambda x. -x \rangle$ and $\langle \mathbb{R}^{>}, 1, *, \lambda x. \frac{1}{x} \rangle$.

Example. A relation $R: A \to B$ in **Rel** is an isomorphism iff both $\forall a \in A. \exists ! b \in B. \ a \ R \ b$ and $\forall b \in B. \exists ! a \in A. \ a \ R \ b$ hold

Example. Two graphs are isomorphic if conceptually one is simply a "renaming" of the vertices and edges of the other.

Example. The only isomorphisms in **Circ** are the identity morphisms.

Example. $\neg : \mathbb{B} \to \mathbb{B}$ is its own inverse in **Set**.

Example. $\neg: \langle \mathbb{B}, \mathbb{t}, \wedge \rangle \to \langle \mathbb{B}, \mathbb{f}, \vee \rangle$ is the inverse of $\neg: \langle \mathbb{B}, \mathbb{f}, \vee \rangle \to \langle \mathbb{B}, \mathbb{t}, \wedge \rangle$ in **Mon**.

Example. Negation is an endomorphism on $(\mathbb{Z}, 0, +)$ that is its own inverse in **Mon**.

Example. Negation serves as an isomorphism in $\mathbf{Rel}(2)$ between (\mathbb{R}, \leq) and (\mathbb{R}, \geq) in both directions.

Example. Negation does *not* serve as an isomorphism in $\mathbf{Rel}(2)$ between (\mathbb{R}, \leq) and $(\mathbb{R}, >)$.