Kan Extensions

Ross Tate

March 26, 2018

Definition (Kan Extension). Given a 2-category, a right Kan extension of a 1-cell $f: C \to D$ along a 1-cell $\iota: C \to C'$ is a 1-cell, typically denoted Ran_{ι} $f: C' \to D$, along with a 2-cell $\pi: \iota$; Ran_{ι} $f \Rightarrow f: C \to D$ that is universal:

Given any $C \xrightarrow{f} D$, there exists a unique 2-cell $\langle \alpha \rangle : f' \Rightarrow \operatorname{Ran}_{\iota}$ such that $C \xrightarrow{f} D$ equals α .

On the flipside, a left Kan extension of $f: C \to D$ along $\iota: C \to C'$ is a 1-cell, typically denoted $\operatorname{Lan}_{\iota} f: C' \to D$, along with a 2-cell $\kappa: f \Rightarrow \iota$; $\operatorname{Lan}_{\iota} f: C \to D$ that is (co)universal:

Given any $C \xrightarrow{f} D$, there exists a unique 2-cell $[\alpha] : \operatorname{Lan}_{\iota} \Rightarrow f'$ such that $C \xrightarrow{f} D$ equals α .

Example. Let **I** be a category representing a scheme, and let $D: \mathbf{I} \to \mathbf{C}$ be a diagram with scheme **I** in category **D**. Then a limit $L \in \mathbf{C}$ of this diagram with natural source $\{L \xrightarrow{\pi_I} DI\}_{I \in \mathbf{I}}$ is a right Kan extension of D along the unique functor from **C** to the singleton category **1**:

$$\mathbf{I} \xrightarrow{D} \mathbf{C}$$

$$! \downarrow \pi$$

$$L = \operatorname{Ran}_! D$$

Similarly, a colimit $C \in \mathbf{C}$ of this diagram with natural sink $\{DI \xrightarrow{\kappa_I} C\}_{I \in \mathbf{I}}$ is a left Kan extension of D along the unique functor from \mathbf{C} to the singleton category 1:

$$\mathbf{I} \xrightarrow{D} \mathbf{C} \\
\downarrow \downarrow \qquad \qquad C \\
\mathbf{I} & C = \operatorname{Lan}_{!} D$$

Definition (Absolute Kan Extension). A right/left Kan extension is absolute if, for all 1-cells $g: D \to E$, the composition $(\operatorname{Ran}_{\iota} f)$; $g/(\operatorname{Lan}_{\iota} f)$; g is a right/left Kan extension of f; g along ι with corresponding 2-cell $\pi * g/\kappa * g$.

Example. A 1-cell $\ell: C \to D$ is a left adjoint if and only if $\operatorname{Lan}_{\ell} id_C$ exists and is absolute, in which case $\operatorname{Lan}_{\ell} id_C$ is the corresponding right adjoint r and the universal 2-cell from id_C to ℓ ; $\operatorname{Lan}_{\ell} id_C$ is the unit of the adjunction $\eta: C \Rightarrow \ell$; r. The counit of the adjunction $\varepsilon: r$; $\ell \Rightarrow D$ is given by the fact that $\eta * \ell : id_C$; $\ell \Rightarrow \ell$; $(r; \ell)$ is also (co)universal due to absoluteness and id_{ℓ} is a 2-cell from id_C ; ℓ to ℓ ; id_D , which implies a unique corresponding 2-cell from r; ℓ to id_D .

On the flipside, a 1-cell $r: C \to D$ is a right adjoint if and only if $\operatorname{Ran}_r id_C$ exists and is absolute. Note that these formulate left/right adjoints as properties of a 1-cell and imply that the remaining components of an adjunction are determined uniquely up to isomorphism.