Reflective and Coreflective Subcategories

Ross Tate

February 28, 2018

1 Reflective Subcategories

Definition. SymLMet is the full category of **LMet** comprised of *symmetric* Lawvere metric spaces $\langle X, d \rangle$, meaning the following holds:

$$\forall x, x' \in X. \ d(x, x') = d(x', x)$$

Similarly, $\mathbf{SymLMet}_u$ and $\mathbf{SymLMet}_c$ are the corresponding full subcategories of \mathbf{LMet}_u and \mathbf{LMet}_c .

Example. Given a Lawvere metric space $\langle X, d \rangle$, define the distance function d_{\min} on X as follows:

$$d_{\min}(x, x') = \inf_{n \in \mathbb{N}, x_0, \dots, x_n \in X} \min\{d(x, x_0), d(x_0, x)\} + \dots + \min\{d(x_n, x'), d(x', x_n)\}$$

The Lawvere metric space $\langle X, d_{\min} \rangle$ is symmetric, and the identity function is a **SymLMet**-reflection arrow from $\langle X, d \rangle$ to $\langle X, d_{\min} \rangle$.

Definition. SSLMet is the full category of **SymLMet** comprised of symmetric, *separated* Lawvere metric spaces $\langle X, d \rangle$, meaning the following holds:

$$\forall x, x' \in X. \ d(x, x') = 0 \implies x = x'$$

Similarly, $SSLMet_u$ and $SSLMet_c$ are the corresponding full subcategories of $SymLMet_u$ and $SymLMet_c$.

Example. Given a symmetric Lawvere metric space $\langle X, d \rangle$, define the equivalence relation \approx_0 on X as

$$x \approx_0 x' \iff d(x, x') = 0$$

Then define the (provably well-defined due to symmetry and triangle inequality) distance function d_0 on X/\approx_0 as

$$d_0([x]_{\approx_0}, [x']_{\approx_0}) = d(x, x')$$

The Lawvere metric space $\langle X, d_0 \rangle$ is symmetric and separated, and the function $\lambda x. [x]_{\approx_0}$ is a **SSLMet**-reflection arrow from $\langle X, d \rangle$ to $\langle X/\approx_0, d_0 \rangle$.

2 Weakly Reflective Subcategory

Definition. Given categories $\mathbf{A} \subseteq \mathbf{B}$, an object $A \in \mathbf{A}$, and an object $B \in \mathbf{B}$, a \mathbf{B} -morphism $r : B \to A$ is a weak \mathbf{A} -reflection arrow for B if for every object $A' \in \mathbf{A}$ and \mathbf{B} -morphism $f : B \to A'$ there exists a (not necessarily unique) \mathbf{A} -morphism $f' : A \to A'$ such that r : f' equals f.

Definition. A subcategory $\mathbf{A} \subseteq \mathbf{B}$ is weakly reflective if for every object $B \in \mathbf{B}$ there exists a weak \mathbf{A} -reflection arrow for B.

Definition. Given a symmetric Lawvere metric space $\langle X, d \rangle$, a point $x \in X$ is said to be a limit of a sequence $(x_i)_{i \in \mathbb{N}}$ of points in X if it satisfies the following property:

$$\forall \varepsilon \in \mathbb{R}^{>}$$
. $\exists n \in \mathbb{N}$. $\forall i \in \mathbb{N}$. $i > n \implies d(x_i, x) < \varepsilon$

Any two limits of a sequence are guaranteed to be distance 0 apart from each other and so essentially equivalent. Thus one often speaks of "the" limit of a sequence and uses the notation $\lim_{i\to\infty} x_i$. Note that every sequence that has a limit is necessarily Cauchy.

Definition. A symmetric Lawvere metric space $\langle X, d \rangle$ is said to be (Cauchy) complete if every Cauchy sequence of $\langle X, d \rangle$ has a limit in $\langle X, d \rangle$.

Definition. CSymLMet is the (provably full) subcategory of **SymLMet** comprised of (Cauchy-)complete symmetric separated Lawvere metric spaces and limit-preserving morphisms. Similarly, **CSymLMet**_u and **CSymLMet**_c are the corresponding subcategories of **SymLMet**_u and **SymLMet**_c, though only the former is provably full.

Definition. CSSLMet is the subcategory of **SSLMet** comprised of (Cauchy-)complete symmetric separated Lawvere metric spaces and limit-preserving morphisms. Similarly, **CSSLMet**_u and **CSSLMet**_c are the corresponding full subcategories of **SSLMet**_u and **SSLMet**_c. These subcategories can all be proven to be full.

Definition. Given a symmetric Lawvere metric space $\langle X, d \rangle$, one can define a distance function d_{ω} between sequences $(x_i)_{i \in \mathbb{N}}$ and $(x_i')_{i \in \mathbb{N}}$ of points in X (where inf and sup denote infimum and supremum, i.e. meet and join):

$$d_{\omega}((x_i)_{i\in\mathbb{N}}, (x_i')_{i\in\mathbb{N}}) = \inf_{n\in\mathbb{N}} \sup_{i,i'\in\mathbb{N}>n} d(x_i, x_i')$$

Definition. Given a symmetric Lawvere metric space $\langle X, d \rangle$, a sequence $(x_i)_{i \in \mathbb{N}}$ of points in X is said to be Cauchy if it satisfies the following property:

$$\forall \varepsilon \in \mathbb{R}^{>}$$
. $\exists n \in \mathbb{N}$. $\forall i, i' \in \mathbb{N}$. $i > n \land i' > n \implies d(x_i, x_i') < \varepsilon$

This is equivalent to the property that $d_{\omega}((x_i)_{i\in\mathbb{N}}, (x_i')_{i\in\mathbb{N}}) = 0$.

Definition. Given a symmetric Lawvere metric space $\langle X, d \rangle$, its (Cauchy) completion $\overline{\langle X, d \rangle}$ is the symmetric Lawvere metric space comprised of the set of Cauchy sequences of $\langle X, d \rangle$ and the distance function d_{ω} . Assuming countable choice or excluded middle, $\overline{\langle X, d \rangle}$ is (Cauchy) complete, and (assuming arbitrary choice) the function $\lambda x.(x)_{i \in \mathbb{N}}$ is a weak reflection arrow in **SymLMet** into **CSymLMet** (and likewise for **SymLMet**_u into **CSymLMet**_u but not for **SymLMet** results in a (strong) reflection arrow from **SymLMet** into **CSSLMet** (and likewise for **SymLMet**_u into **CSSLMet**_u but not assuming arbitrary choice.

3 Coreflective Subcategories

Example. Set is a coreflective subcategory of **Rel**. The function on objects is the powerset constructor \mathbb{P} . The coreflection arrow for each set X is the relation $\mathbb{P}(X) \xrightarrow{\ni} X$ given by $\{\langle \mathcal{X}, x \rangle \mid x \in \mathcal{X} \subseteq X\}$. Given a relation $R: Y \to X$, the uniquely induced function from Y to $\mathbb{P}(X)$ is $\lambda y. \{x \in X \mid y \ R \ x\}$.

Example. The restriction of $\langle X, d \rangle$ to only Cauchy sequences is the coreflection of $\langle X^{\mathbb{N}}, d_{\omega} \rangle$ for the subcategory **SymLMet** of the category of symmetric Lawvere metric spaces failing to ensure point inequality.

Example. Given a Lawvere metric space $\langle X, d \rangle$, define the distance function d_{max} on X as follows:

$$d_{\max}(x, x') = \max\{d(x, x'), d(x', x)\}$$

The Lawvere metric space $\langle X, d_{\text{max}} \rangle$ is symmetric, and the identity function is a **SymLMet**-coreflection arrow from $\langle X, d_{\text{max}} \rangle$ to $\langle X, d \rangle$.

Example. Given a symmetric Lawvere metric space $\langle X, d \rangle$ and some subset X' of X satisfying the following property:

$$\forall x \in X. \ \exists! x' \in X'. \ d(x, x') = 0$$

The Lawvere metric space $\langle X', d \rangle$ is symmetric and separated, and the inclusion function for $X' \subseteq X$ is a **SSLMet**-coreflection arrow from $\langle X', d \rangle$ to $\langle X, d \rangle$.