Subcategories

Ross Tate

February 22, 2018

1 Subcategories

Definition. A Hausdorff space, a.k.a separated space or T_2 space, is a topological space $\langle X, \tau \rangle$ satisfying the " T_2 separation axiom":

$$\forall x, x' \in X. \ x \neq x' \implies \exists O, O' \in \tau. \ x \in O \land x' \in O' \land O \cap O' = \varnothing$$

Haus is the full subcategory of **Top** comprised of precisely the Hausdorff spaces.

Definition. A Tychonoff space, a.k.a. $T_{3^{1/2}}$ space or T_{π} space or completely T_3 space or completely regular Hausdorff space, is a Hausdorff space $\langle X, \tau \rangle$ satisfying the following "separation axiom":

 $\forall x \in X, O \in \tau. \ x \in O \implies \exists f : \langle X, \tau \rangle \rightarrow_{\mathbf{Top}} \mathbb{R}. \ f(x) = 0 \land \forall x' \in X \setminus O. \ f(x') = 1$

Tych is the full subcategory of Haus comprised of precisely the Tychonoff spaces.

Definition. Prost is the full subcategory of $\mathbf{Rel}(2)$ of reflexive and transitive relations. Pos is the full subcategory of **Prost** of antisymmetric relations.

Definition. Given a preordered set $\langle X, \leq \rangle$, a meet, a.k.a. infimum or greatest lower bound, of an *I*-indexed collection $\{x_i\}_{i \in I}$ of elements of X is an element x of X satisfying the following properties:

Lower Bound $\forall i \in I. x \leq x_i$

Greatest $\forall x' \in X. (\forall i \in I. x' \leq x_i) \implies x' \leq x$

Given any two meets x and x' of a collection, they are provably equivalent to each other, meaning $x \le x'$ and $x' \le x$ holds. As such, we often refer to both as "the" meet of the collection. In fact, if the preorder is actually a partial order, then meets are unique.

An *I*-indexed meet operator \square is a function mapping *I*-indexed collections to a meet of the input collection. That is, it has the property that $\square_{i \in I} x_i$ is always a meet of $\{x_i\}_{i \in I}$. When *I* has precisely two elements, i.e. the binary case, one often uses the notation $x_1 \sqcap x_2$. When *I* has no elements, i.e. the nullary case, one often uses the notation \top , which is known as a/the top of the preorder. An arbitrary meet operator is a meet operator for every set *I* or for every set *I* that is a subset of *X*.

Definition. Given a preordered set $\langle X, \leq \rangle$, a join, a.k.a. supremum or least upper bound, of an *I*-indexed collection $\{x_i\}_{i \in I}$ of elements of X is an element x of X satisfying the following properties:

Upper Bound $\forall i \in I. x_i \leq x$

Least $\forall x' \in X. \ (\forall i \in I. \ x_i \leq x') \implies x \leq x'$

Given any two joins x and x' of a collection, they are provably equivalent to each other, meaning $x \le x'$ and $x' \le x$ holds. As such, we often refer to both as "the" join of the collection. In fact, if the preorder is actually a partial order, then joins are unique.

An *I*-indexed join operator \bigsqcup is a function mapping *I*-indexed collections to a join of the input collection. That is, it has the property that $\bigsqcup_{i \in I} x_i$ is always a join of $\{x_i\}_{i \in I}$. When *I* has precisely two elements, i.e. the binary case, one often uses the notation $x_1 \bigsqcup x_2$. When *I* has no elements, i.e. the nullary case, one often uses the notation \bot , which is known as a/the bottom of the preorder. An arbitrary join operator is a join operator for every set *I* or for every set *I* that is a subset of *X*.

Definition. A lattice is a partial order with binary meets and joins. A lattice homomorphism is a preorder-preserving function that furthermore preserves binary meets and joins. **Lat** is the subcategory of **Pos** of lattices and lattice homomorphisms.

Definition. A complete lattice is a lattice with arbitrary meets and joins. **JCPos** is the subcategory of **Pos** of complete lattices and arbitrary-join-preserving relation-preserving functions. **CLat** is the subcategory of **Lat** and of **JCPos** of complete lattices and arbitrary-join-preserving and arbitrary-meet-preserving relation-preserving functions.

2 Full and Wide Subcategories

Definition. A semigroup is a set A and an associative binary operator $+ : A \times A \rightarrow A$. A semigroup homomorphism is a function that preserves the binary operator. **Sgr** is the category of semigroups and semigroup homomorphisms.

Definition. A full subcategory of a category C is a subcategory S of C that contains all morphisms in C between any two objects in S.

Example. Grp is (isomorphic to) a full subcategory of Mon because inverses are unique and all monoid homomorphisms provable preserve inverses. Mon is (isomorphic to) a non-full subcategory of Sgr because identities are unique but some semigroup homomorphisms do not preserve identities.

Definition. A wide subcategory of a category C is a subcategory of C that contains all the objects of C.

Example. Set is (isomorphic to) a wide subcategory of Rel.

Example. (L)Met is a wide subcategory of (L)Met_u, which in turn is a wide subcategory of (L)Met_c.

3 Isomorphism-Dense/Closed Subcategories and Skeletons

Definition. A (not necessarily full) subcategory S of a category C is said to be isomorphism-closed whenever every isomorphism in C is always contained in S if its domain is contained in S. Note that one could equivalently define this to use codomain in place of domain.

Example. The following are all (chains of) non-wide isomorphism-closed subcategories:

- $\mathbf{Grp} \subset \mathbf{Mon} \subset \mathbf{Sgr}$
- $\mathbf{Pos} \subset \mathbf{Prost} \subset \mathbf{Rel}(2)$
- $\mathbf{CLat} \subset \mathbf{JCPos} \subset \mathbf{Pos}$
- $CLat \subset Lat \subset Pos$
- $Met \subset LMet$
- Tych \subset Haus \subset Top

Example. For those familiar with linear algebra, **Mat** is (isomorphic to) a skeleton of the category of finite (real-valued) vector spaces and linear functions.