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Creating Relations in SQL
! Creates Students 

relation 
◦ Type (domain) of each 

field is specified 
◦ Enforced by DBMS 

whenever tuples are 
added or modified 

! Enrolled table holds 
information about 
courses that students 
take

CREATE TABLE Students 
 (sid CHAR(20),  
  name CHAR(20),  
  login CHAR(10), 
  age INT, 
  gpa REAL);  

CREATE TABLE Enrolled 
 (sid CHAR(20),  
  cid CHAR(20),  
  grade CHAR(2));  
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Foreign Keys in SQL
�Only students listed in the Students relation should 

be allowed to enroll for courses
CREATE TABLE Enrolled 
   (sid CHAR(20),  cid CHAR(20),  grade CHAR(2), 
     PRIMARY KEY  (sid,cid), 
     FOREIGN KEY (sid) REFERENCES Students (sid) );

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students
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Inserting Data

INSERT INTO Students  
VALUES (‘5’, ‘Thomas’, ’Th75’, 20, 3.7);
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Querying Data

SELECT  S.name, E.cid 
FROM     Students S, Enrolled E 
WHERE  S.sid=E.sid AND S.gpa>3.5;
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SQL Summary:

❖ Basic SELECT/FROM/WHERE queries 
❖ Expressions and strings 
❖ Set operators 
❖ Nested queries 
❖ Aggregation 
❖ GROUP BY/HAVING 
❖ Null values and Outer Joins 
❖ (ORDER BY and other features…)
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Query Optimizer

Query Optimization Overview

Plan 
generator

Plan cost 
estimator

Query Parser

Catalog 
Manager

Query Plan Evaluator

Query

Physical Query Plan
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Enumeration of Plans

– Pass 1:  Find best 1-relation plan for each relation 
�includes any selects/projects just on this relation. 

– Pass 2:  Find best way to join result of each 1-
relation plan (as outer) to another relation.  (All 2-
relation plans.)   

– Pass k:  Find best way to join result of a (k-1)-
relation plan (as outer) to the kth relation.  (All k-
relation plans.)
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Query & logical and physical plans

� Physical query plan = RA tree 
annotated with info on access 
methods and operator 
implementation

SELECT  S.sname 
FROM  Reserves R, Sailors S 

WHERE  R.sid=S.sid AND  
    R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

snameLogical  
query plan:

Reserves

Sailors

sid=sid

bid=100 

sname (On-the-fly)

rating > 5

(Use hash
index; do
not write
result to 
temp)

(Index Nested Loops,
with pipelining )

(On-the-fly)
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Tuple Nested Loop Join

foreach tuple r in R do 
     foreach tuple s in S do 
          if r.sid == s.sid  then add <r, s> to result

� R is “outer” relation 
� S is “inner” relation
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Page Nested Loop Join

foreach page p1 in R do 
     foreach page p2 in S do 
          foreach r in p1 do 
               foreach s in p2 do           
                       if r.sid == s.sid  then add <r, s> to result

� R is “outer” relation 
� S is “inner” relation
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Block Nested Loops Join
�Use one page as input buffer for scanning S, one page 

as output buffer, and all remaining pages to hold 
``block’’ of R. 
– For each matching tuple r in R-block, s in S-page,  

add <r, s> to result.  Then read next R-block, scan S, etc.

. . .
. . .

R & S
Block of R

Input buffer for S Output buffer

. . .

Join Result
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Index Nested Loops Join

�Suppose we have an index on S, on the join 
attribute 

�No need to scan all of S – just use index to 
retrieve tuples that match this r 

�This will probably be faster, especially if there 
are few matching tuples and the index is 
clustered

foreach tuple r in R do 
 foreach tuple s in S where ri == sj  do 
  add <r, s> to result
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Sort-Merge Join

�Sort R and S on the join column, then scan them to do 
a ``merge’’ (on join col.), and output result tuples.
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Hash Join

� Partition both 
relations using hash 
fn h:  R tuples in 
partition i will only 
match S tuples in 
partition i. B main memory buffers DiskDisk

Original  
Relation OUTPUT

2INPUT

1

hash 
function 

h B-1

Partitions

1

2

B-1

. . .
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Tree-structured indexing
�Tree-structured indexing techniques support 

both range searches and equality searches. 
� ISAM:  static structure;  B+ tree:  dynamic, 

adjusts gracefully under inserts and deletes. 

�Simple cost metric for discussion of search 
costs: number of disk I/Os (i.e. how many 
pages need to be brought in from disk) 
– Ignore benefits of sequential access etc to simplify
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B+ Tree Indexes

❖ Leaf pages contain data entries 
❖ Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages  
(Sorted by search key)

Leaf



Database Management Systems, R. Ramakrishnan and J. Gehrke 31

Clustered vs. Unclustered Index

Index entries

Data entries

direct search for 

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED
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Indexing using Hashing

�Hash-based indexes are for equality selections. Cannot 
support range searches. 

�Static and dynamic hashing techniques exist; trade-
offs similar to ISAM vs. B+ trees.
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Buffer Management in a DBMS

�Data must be in RAM for DBMS to operate on it! 
�Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated 
by replacement policy
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When a Page is Requested ...

�If page is not in pool (cache miss): 
– Choose a frame for replacement 
– If  frame contains a page with changes, write it to disk 
– Read requested page into chosen frame 
– Pin the page and return its address.   

�If requested page is in pool (cache hit): 
– Increment its pin count and return its address. 

�  If requests can be predicted (e.g., sequential scans) 
  pages can be pre-fetched several pages at a time
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Buffer Replacement Policies

� Lots of other replacement policies: 
� MRU 
� LFU (Least Frequently Used) 
� Random 
� FIFO (First In First Out) 
� Clock (Round Robin) 

� Different benefits for different workloads 
� Also, some require keeping less state than others
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Buffer Replacement Policy (Contd.)

�Policy can have big impact on # of I/O’s; 
depends on the access pattern. 

�Sequential flooding:  Nasty situation caused by 
LRU + repeated sequential scans. 
– # buffer frames < # pages in file means each page 

request causes an I/O.  
– Example scenario: join implementation with nested 

loops
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�Are a fundamental database abstraction 
�ACID properties 

– Atomicity 
– Durability 
– Consistency 
– Isolation 

�Broadly supported in relational DBMSs 
�NoSQL support is a moving target

Transactions
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�A transaction should execute completely or not 
at all 

� If the first few statements succeed, but the next 
one fails, the entire transaction must be rolled 
back 
– This failure could be due to an error/exception or to 

a system crash 
� It ain't over till it's over – nothing is guaranteed 

until the transaction commits

Atomicity
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�Assume we have an intrinsic notion of data 
consistency 
– E.g. semantic constraints are satisfied by DB 

�E.g. every order has associated billing info 

�The "C" in ACID: A transaction, if executed by 
itself on a consistent DB, will produce another 
consistent DB 
– An assumption that a transaction is a self-

contained unit of work (no loose ends)

Consistency
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�No harmful interference between transactions 
is permitted as they run 

�Every transaction should have the illusion of 
having the DB to itself

Isolation
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�Once a transaction does commit, the changes 
should be persistent 

� If system crashes before changes make it to 
disk, this could be a problem! 

�Does not preclude the ability to "undo" a real 
world action, e.g. cancel an order 
– But this must be done using a second transaction.

Durability
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Big Picture (all inclusions are proper)

All schedules

Conflict 
SerializableView SerializableFinal State 

Serializable
Serial
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�Given a schedule, can identify all conflicting 
pairs of operations and represent them as a 
graph 

�Nodes are transactions 
�Edge from i to j if transaction i contains an 

operation that conflicts with and precedes (in 
the schedule) an operation by transaction j 

�Example: R1(A) W2(A) R1(A)

Conflict Graphs
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�A schedule is conflict serializable if its conflict 
graph contains no cycle 

�Alternative (equivalent) statement: it is 
conflict serializable if it has the same conflict 
graph as some serial schedule 
– Why are these equivalent? 

�Topological sort on the conflict graph gives us 
equivalent serial execution

Conflict Serializability
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�First family of protocols – based on idea of 
locks 

�Before any read or write, a transaction must 
request a lock on an object 
– A "permission to operate" on this object 

�Locks are managed centrally by the DBMS 
lock manager

Locking-Based Protocols
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2PL variants
         Conservative 

Strict

Yes No

Yes

No



50

Optimistic CC

�Locking is a conservative approach in which 
conflicts are prevented. Disadvantages: 
– Lock management overhead. 
– Deadlock detection/resolution. 
– These overheads occur even if conflicts are rare 

� If conflicts are rare, we might be able to gain 
concurrency by not locking, and instead 
checking for conflicts before commit.
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�System keeps several versions of each data 
item  

�When a transaction writes a data item, it 
creates a new version rather than overwriting 

�When a transaction reads a data item, the 
version visible to the read is determined by 
the protocol used (several options) 

�Maintaining versions can be nontrivial and 
comes with its own extra cost, of course

MVCC
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Basic Idea: Logging

�Record REDO and UNDO information, for 
every update, in a log that will survive crashes. 
– Log is written sequentially. 
– Minimal info (diff) written to log, so multiple 

updates fit in a single log page. 
�Log: An ordered list of REDO/UNDO actions 

– Log record contains:  
<transID, pageID, offset, length, old data, new data>  

– and additional control info (which we’ll see soon).
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Write-Ahead Logging (WAL)

�The Write-Ahead Logging Protocol: 
–  Must force the log record for an update before the 

corresponding data page gets to disk. 
–  Must write all log records for a transaction before 

commit. 
�#1 guarantees Atomicity (why?) 
�#2 guarantees Durability (why?) 
�Exactly how is logging (and recovery!) done? 

– We’ll study the ARIES algorithm.
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Crash Recovery: Big Picture

�Start from a checkpoint (found 
via master record). 

�Three phases.  Need to: 
– Figure out which transactions 

committed since checkpoint, 
which failed (Analysis). 

– REDO all actions. 
�(repeat history) 

– UNDO effects of failed 
transactions.

Oldest log rec. 
of transaction 
active at crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Last chkpt

CRASH

A R U
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