
1

Overview of Relational DBMS  
(CS 4320 Recap)

CS 6320

2

Overview

Architecture of database systems, Hellerstein et al., 2007.

3

Overview

Architecture of database systems, Hellerstein et al., 2007.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Creating Relations in SQL
! Creates Students

relation
◦ Type (domain) of each

field is specified
◦ Enforced by DBMS

whenever tuples are
added or modified

! Enrolled table holds
information about
courses that students
take

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INT,
 gpa REAL);

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2));

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Foreign Keys in SQL
�Only students listed in the Students relation should

be allowed to enroll for courses
CREATE TABLE Enrolled
 (sid CHAR(20), cid CHAR(20), grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students (sid));

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Inserting Data

INSERT INTO Students
VALUES (‘5’, ‘Thomas’, ’Th75’, 20, 3.7);

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Querying Data

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND S.gpa>3.5;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

SQL Summary:

❖ Basic SELECT/FROM/WHERE queries
❖ Expressions and strings
❖ Set operators
❖ Nested queries
❖ Aggregation
❖ GROUP BY/HAVING
❖ Null values and Outer Joins
❖ (ORDER BY and other features…)

9

Overview

Architecture of database systems, Hellerstein et al., 2007.

10

Query Optimizer

Query Optimization Overview

Plan
generator

Plan cost
estimator

Query Parser

Catalog
Manager

Query Plan Evaluator

Query

Physical Query Plan

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimal Plan Sub-Optimal Plans

Time

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimization

Query: R⨝S⨝T

R⨝S S⨝T

R S

R⨝T

T

R⨝S⨝T

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

Optimization

Query: R⨝S⨝T

R⨝S⨝T

R⨝S S⨝T R⨝T

R S T

19

Enumeration of Plans

– Pass 1: Find best 1-relation plan for each relation
�includes any selects/projects just on this relation.

– Pass 2: Find best way to join result of each 1-
relation plan (as outer) to another relation. (All 2-
relation plans.)

– Pass k: Find best way to join result of a (k-1)-
relation plan (as outer) to the kth relation. (All k-
relation plans.)

20

Overview

Architecture of database systems, Hellerstein et al., 2007.

21

Query & logical and physical plans

� Physical query plan = RA tree
annotated with info on access
methods and operator
implementation

SELECT S.sname
FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

snameLogical
query plan:

Reserves

Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Tuple Nested Loop Join

foreach tuple r in R do
 foreach tuple s in S do
 if r.sid == s.sid then add <r, s> to result

� R is “outer” relation
� S is “inner” relation

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Page Nested Loop Join

foreach page p1 in R do
 foreach page p2 in S do
 foreach r in p1 do
 foreach s in p2 do
 if r.sid == s.sid then add <r, s> to result

� R is “outer” relation
� S is “inner” relation

24

Block Nested Loops Join
�Use one page as input buffer for scanning S, one page

as output buffer, and all remaining pages to hold
``block’’ of R.
– For each matching tuple r in R-block, s in S-page,  

add <r, s> to result. Then read next R-block, scan S, etc.

. . .
. . .

R & S
Block of R

Input buffer for S Output buffer

. . .

Join Result

25

Index Nested Loops Join

�Suppose we have an index on S, on the join
attribute

�No need to scan all of S – just use index to
retrieve tuples that match this r

�This will probably be faster, especially if there
are few matching tuples and the index is
clustered

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

26

Sort-Merge Join

�Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

27

Hash Join

� Partition both
relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i. B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

28

Overview

Architecture of database systems, Hellerstein et al., 2007.

Database Management Systems, R. Ramakrishnan and J. Gehrke 29

Tree-structured indexing
�Tree-structured indexing techniques support

both range searches and equality searches.
� ISAM: static structure; B+ tree: dynamic,

adjusts gracefully under inserts and deletes.

�Simple cost metric for discussion of search
costs: number of disk I/Os (i.e. how many
pages need to be brought in from disk)
– Ignore benefits of sequential access etc to simplify

Database Management Systems, R. Ramakrishnan and J. Gehrke 30

B+ Tree Indexes

❖ Leaf pages contain data entries
❖ Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(Sorted by search key)

Leaf

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

Clustered vs. Unclustered Index

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

32

Indexing using Hashing

�Hash-based indexes are for equality selections. Cannot
support range searches.

�Static and dynamic hashing techniques exist; trade-
offs similar to ISAM vs. B+ trees.

33

Overview

Architecture of database systems, Hellerstein et al., 2007.

34

Buffer Management in a DBMS

�Data must be in RAM for DBMS to operate on it!
�Table of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

35

When a Page is Requested ...

�If page is not in pool (cache miss):
– Choose a frame for replacement
– If frame contains a page with changes, write it to disk
– Read requested page into chosen frame
– Pin the page and return its address.

�If requested page is in pool (cache hit):
– Increment its pin count and return its address.

� If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched several pages at a time

36

Buffer Replacement Policies

� Lots of other replacement policies:
� MRU
� LFU (Least Frequently Used)
� Random
� FIFO (First In First Out)
� Clock (Round Robin)

� Different benefits for different workloads
� Also, some require keeping less state than others

37

Buffer Replacement Policy (Contd.)

�Policy can have big impact on # of I/O’s;
depends on the access pattern.

�Sequential flooding: Nasty situation caused by
LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page

request causes an I/O.
– Example scenario: join implementation with nested

loops

38

Overview

Architecture of database systems, Hellerstein et al., 2007.

39

�Are a fundamental database abstraction
�ACID properties

– Atomicity
– Durability
– Consistency
– Isolation

�Broadly supported in relational DBMSs
�NoSQL support is a moving target

Transactions

40

�A transaction should execute completely or not
at all

� If the first few statements succeed, but the next
one fails, the entire transaction must be rolled
back
– This failure could be due to an error/exception or to

a system crash
� It ain't over till it's over – nothing is guaranteed

until the transaction commits

Atomicity

41

�Assume we have an intrinsic notion of data
consistency
– E.g. semantic constraints are satisfied by DB

�E.g. every order has associated billing info

�The "C" in ACID: A transaction, if executed by
itself on a consistent DB, will produce another
consistent DB
– An assumption that a transaction is a self-

contained unit of work (no loose ends)

Consistency

42

�No harmful interference between transactions
is permitted as they run

�Every transaction should have the illusion of
having the DB to itself

Isolation

43

�Once a transaction does commit, the changes
should be persistent

� If system crashes before changes make it to
disk, this could be a problem!

�Does not preclude the ability to "undo" a real
world action, e.g. cancel an order
– But this must be done using a second transaction.

Durability

44

Overview

Architecture of database systems, Hellerstein et al., 2007.

45

Big Picture (all inclusions are proper)

All schedules

Conflict
SerializableView SerializableFinal State

Serializable
Serial

46

�Given a schedule, can identify all conflicting
pairs of operations and represent them as a
graph

�Nodes are transactions
�Edge from i to j if transaction i contains an

operation that conflicts with and precedes (in
the schedule) an operation by transaction j

�Example: R1(A) W2(A) R1(A)

Conflict Graphs

47

�A schedule is conflict serializable if its conflict
graph contains no cycle

�Alternative (equivalent) statement: it is
conflict serializable if it has the same conflict
graph as some serial schedule
– Why are these equivalent?

�Topological sort on the conflict graph gives us
equivalent serial execution

Conflict Serializability

48

�First family of protocols – based on idea of
locks

�Before any read or write, a transaction must
request a lock on an object
– A "permission to operate" on this object

�Locks are managed centrally by the DBMS
lock manager

Locking-Based Protocols

49

2PL variants
 Conservative

Strict

Yes No

Yes

No

50

Optimistic CC

�Locking is a conservative approach in which
conflicts are prevented. Disadvantages:
– Lock management overhead.
– Deadlock detection/resolution.
– These overheads occur even if conflicts are rare

� If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before commit.

51

�System keeps several versions of each data
item

�When a transaction writes a data item, it
creates a new version rather than overwriting

�When a transaction reads a data item, the
version visible to the read is determined by
the protocol used (several options)

�Maintaining versions can be nontrivial and
comes with its own extra cost, of course

MVCC

52

Overview

Architecture of database systems, Hellerstein et al., 2007.

53

Basic Idea: Logging

�Record REDO and UNDO information, for
every update, in a log that will survive crashes.
– Log is written sequentially.
– Minimal info (diff) written to log, so multiple

updates fit in a single log page.
�Log: An ordered list of REDO/UNDO actions

– Log record contains:
<transID, pageID, offset, length, old data, new data>

– and additional control info (which we’ll see soon).

54

Write-Ahead Logging (WAL)

�The Write-Ahead Logging Protocol:
– Must force the log record for an update before the

corresponding data page gets to disk.
– Must write all log records for a transaction before

commit.
�#1 guarantees Atomicity (why?)
�#2 guarantees Durability (why?)
�Exactly how is logging (and recovery!) done?

– We’ll study the ARIES algorithm.

55

Crash Recovery: Big Picture

�Start from a checkpoint (found
via master record).

�Three phases. Need to:
– Figure out which transactions

committed since checkpoint,
which failed (Analysis).

– REDO all actions.
�(repeat history)

– UNDO effects of failed
transactions.

Oldest log rec.
of transaction
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

56

Overview

Architecture of database systems, Hellerstein et al., 2007.

